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ABSTRACT In recent years, there has been a growing interest in applying knowledge distillation (KD)
techniques to the connectionist temporal classification (CTC) framework for training more efficient speech
recognition models. Although conventional KD approaches have successfully reduced computational
burden, they have limitations in dealing with the inconsistency problem caused by dropout regularization,
particularly the gap between the training and inference stages. In the context of KD, this inconsistency may
hinder the performance improvement of the student model. To overcome this issue, we propose a novel
approach, namely Cons-KD, that combines KD and consistency regularization, where the former trains the
student model to benefit from the knowledge of the teacher model, and the latter trains the student model to be
more robust to the dropout-induced inconsistency. By directly mitigating the inconsistency problem, our KD
framework can further improve the student’s performance compared to the vanilla KD. Experimental results
on the LibriSpeech dataset demonstrate that Cons-KD significantly outperforms previous KD methods,
improving the word error rate (WER) from 5.10 % to 4.13 % on the test-clean subset and from 12.87 % to
10.32% on the test-other subset, respectively. These improvements correspond to relative error rate reduction
(RERR) of 19.02 % and 19.81 %, respectively, implying notable advancements beyond conventional KD
methods. Additionally, we conduct an in-depth analysis to verify the effect of each proposed objective.

INDEX TERMS Speech recognition, knowledge distillation, teacher-student learning, consistency
regularization, consistency training, connectionist temporal classification.

I. INTRODUCTION
Recently, there have been significant advancements in the
field of end-to-end speech recognition, aiming to directlymap
a speech signal to the corresponding text. In comparison to
the traditional deep neural network (DNN)-hidden Markov
model (HMM) hybrid systems, end-to-end speech recogni-
tion models not only simplify the overall training pipeline but
also achieve superior performance on the learning task.

With the growing interest in model efficiency, the connec-
tionist temporal classification (CTC) [1] model has gained

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

attention among the end-to-end models due to its non-
autoregressive (NAR) nature. In contrast to autoregressive
(AR) models [2], [3], [4] that require M decoding steps to
generate M tokens during inference, the CTC model can
produce the output sequence in parallel, regardless of the
length of the target tokens. This NAR property offers a
significant advantage in real-world applications where fast
inference is desirable.

However, existing CTC models [5], [6], [7], [8] often
require substantial computational costs, such as large model
size, lengthy training time, and extensive GPU resources,
to achieve promising performance. To alleviate this burden,
several approaches have been proposed to apply knowledge
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distillation (KD) [9] to the CTC framework [10], [11], [12],
[13], [14], [15], [16]. KD is a widely-used technique that
aims to transfer knowledge from a deep and complex teacher
model to a student model with a reduced structure. In the
context of KD for CTC, the student model is typically
trained to simultaneously predict both the ground-truth labels
and the soft labels generated by the teacher model. These
soft labels can include sentence predictions or frame-wise
softmax outputs. By leveraging the teacher’s knowledge, the
distilled student can perform better than its baseline trained
solely based on the ground-truth labels.

Despite their effectiveness, conventional KD approaches
have certain limitations in dealing with the inconsistency
problem caused by dropout regularization [17]. Recent
research on consistency regularization has shed light on
the side effects of dropout, particularly the inconsistency
between the training and inference stages [18], [19], [20].
During training, dropout randomly drops out a fraction of
neurons, creating a sub-model at each iteration. In contrast,
during inference, a full model is employed without dropout
randomness. This significant gap between the sub-model
(during training) and the full model (during inference) often
leads to performance degradation because the full model
may not perform optimally; training based on the dropout
technique considers only the configuration of the sub-model.
In the context of KD, existing methods have primarily
focused on how to effectively transfer knowledge from the
teacher model to the student model but have not directly
addressed this inconsistency issue, which could impede
the performance of the student model. To minimize the
performance degradation caused by dropout, it is crucial
to design a new KD framework that can mitigate dropout-
induced inconsistency, enabling more effective training of the
student model.

In this paper, we propose a novel dropout-robust KD
framework, referred to Cons-KD. Cons-KD combines KD
and consistency regularization, where the former guides the
student to mimic the behavior of the teacher, while the latter
encourages the student to produce consistent outputs. The
core idea is to use dropout not merely as a regularization
technique but as a mechanism to generate diverse sub-models
within the student model. Through multiple forward passes
with varied dropout masks, it is possible to generate a range
of student sub-model outputs from a single input, without
adding extramodel parameters. In contrast to the previousKD
frameworks, Cons-KD presents a novel aspect of randomly
sampling different student sub-models and encouraging them
to produce consistent outputs. Thus, Cons-KD guarantees
that the outputs of the student sub-models are consistent and
reliable, despite the internal variations introduced by dropout.
It not only enhances the effectiveness of KDbut also increases
the robustness of the distilled model, thereby improving the
overall quality of the student model.

When training the student sub-models, the proposed
framework involves three training objectives: (1) the original

CTC objective function with the ground-truth labels as the
target, (2) the KD loss to minimize the distance between the
sub-models’ average prediction and the teacher’s prediction,
and (3) the consistency regularization objective to reduce
the variance among the predictions of the sub-models.
By integrating these three objectives, Cons-KD aims to train
a student model that is more robust to dropout, leading
to further performance improvements compared to the
original KD.

From experimental results on LibriSpeech, it is verified
that the proposed method achieves better performance than
other previous KD methods. Specifically, on test-clean and
test-other datasets, Cons-KD improves the student’s word-
error rate (WER) from 5.10 % to 4.13 % and from 12.87 %
to 10.32 % with greedy decoding, respectively. These
improvements correspond to relative error rate reduction
(RERR) of 19.02 % and 19.81 %, respectively, implying
notable advancements beyond conventional KD methods.
Additionally, we conduct further analyses to verify the
effect of each objective function on the student model’s
performance. Our findings highlight the effectiveness of
combining KD with consistency regularization, setting a
new benchmark for KD applications in speech recognition
and offering a robust solution to model inconsistency
challenges.

To summarize, the main contributions of this paper are as
follows:
• We introduce a novel KD method, namely Cons-KD,
designed to improve the student model’s robustness
against inconsistencies induced by dropout. The pro-
posed framework effectively minimizes the inconsis-
tency issue between the training and inference stages
when distilling the knowledge, thereby improving the
student’s performance. As far as we know, this is the first
attempt to explore the combination of consistency regu-
larization and KD specifically for a speech recognition
task.

• The proposed approach employs multiple forward
passes, each utilizing unique dropout masks, to generate
diverse student sub-model outputs from a single input.
This sampling method does not require any additional
model parameters, thus maintaining the lightweight
nature of the student model.

• A novel tripartite training objective framework is
presented within Cons-KD, comprising the original
CTC loss, the KD objective based on the averaged
outputs of student sub-models, and the consistency
regularization objective. This strategy ensures effective
knowledge transfer and reduces prediction variance,
thereby enhancing model stability and performance.

• Experimental results on the LibriSpeech dataset demon-
strate that our proposed method notably outperforms
conventional KD methods that do not address the
inconsistency problem of the student. Byminimizing the
performance degradation caused by the inconsistency,
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Cons-KD significantly improves the student’s
performance.

The rest of the paper is organized as follows: Section II
describes the previous work related to our research. In
Section III, we define the inconsistency problem induced by
the dropout and introduce our proposedKD approach, namely
Cons-KD. Section IV presents the experimental setup and
results. Section V presents the paper’s conclusions.

II. RELATED WORK
A. CONNECTIONIST TEMPORAL CLASSIFICATION
An end-to-end speech recognition framework aims to convert
a sequence of input acoustic features, represented by x1:T =
{x1, . . . , xT }, into a sequence of textual labels y1:N =

{y1, . . . , yN }, where each yn is a part of a predefined set of
labels Y . Here, T and N respectively denote the total number
of acoustic frames and the sequence length of the target
labels. Given that the source sequence x1:T = {x1, . . . , xT }
and the target sequence y1:N = {y1, . . . , yN } typically
have unequal lengths, addressing the challenge of mapping
these sequences of varying lengths is essential. To tackle
this challenge, the Connectionist Temporal Classification
(CTC) [1] employs a ‘‘blank’’ label and allows label
repetition across frames. This approach generates a CTC
alignment π1:T = {π1, . . . , πT }, mapping each frame xt
to a label πt from the expanded set Y ′ = Y ∪ {blank}.
A mapping function B processes the sequence π into
the output sequence y by merging consecutive identical
labels and removing blanks. For instance, CTC align-
ment for the word‘‘speech’’ could include sequences like
{ε, ε, s, s, ε, p, e, ε, e, ε, c, h, ε} and {s, ε, p, ε, e, e, ε, c, ε, h}
(using ‘ε’ to denote blank label). After being processed by the
mapping function B, both sequences are transformed into the
same sequence {s, p, e, e, c, h}. Explicit alignment between
the source sequence x and the target sequence y is not required
in the training phase for CTC. The conditional probability
of the target sequence y given the source sequence x can be
computed as

p(y|x) =
∑

π∈B−1(y)
p(π |x), (1)

where B−1 represents the inverse of the mapping function,
returning all possible alignment sequences that map to y.
Under the conditional independence assumption, the proba-
bility of the CTC alignment π = {π1, . . . , πT } is given by

p(π |x) =
T∏
t=1

p(πt |x). (2)

Given the target y and the input x, the CTC loss function Lctc
is formulated as

Lctc = −
∑

(x,y)∈Z

ln p(y|x), (3)

where Z is a set of training data pairs.

B. KNOWLEDGE DISTILLATION
KD is one of the most effective methods for model
compression. Hinton et al. [9] initially introduced the concept
of KD, which is aimed at transferring knowledge from a deep
and powerful teacher model to a shallow and efficient student
model. By minimizing the Kullback-Leibler (KL) divergence
between the softmax outputs of the two models, the distilled
student achieves better performance than its baseline trained
solely on the target ground truth. As lightweight models
have received significant attention, there have been extensive
efforts to integrate KD into the speech recognition frame-
work. In the context of the DNN-HMM hybrid framework,
earlier KD research has mainly involved training the student
model by reducing the frame-level cross-entropy (CE) loss
between the posterior probabilities of the teacher and student
models [21], [22], [23], [24], [25], [26]. However, it has
been shown that using the frame-level CE objective for
training the CTC-based speech recognition model is not
suitable, given the alignment-free characteristic of the CTC
model and its tendency to produce peaky softmax values.
According to previous research [14], [15], [16], this approach
can result in performance degradation compared to the case
when the model is trained solely with the target label.
To deal with this problem, Takashima et al. explored the
application of sequence-level KD to the CTCmodel, inspired
by the method proposed by Kim and Rush [27]. Initially,
they leveraged N-best hypotheses generated by the teacher
model instead of using frame-level softmax outputs [14].
Following this, they introduced a lattice-based sequence-level
KDmethod to enhance computational efficiency [15]. Kurata
and Audhkhasi [13] suggested the KD framework designed
to train a low-latency student model using knowledge from
a high-latency teacher model. Additionally, they introduced
Guided CTC training [12], a method for distilling CTC
spike timings from the teacher model. Yoon et al. proposed
softmax-level KD (SKD) [10], a framework that employs an
l2 loss to measure differences between the softmax outputs
of two models, providing an effective alternative to the
Kullback-Leibler (KL) divergence objective. Additionally,
they pioneered the application of the Fitnets concept,
originally proposed by Romero et al. [28], to speech
recognition systems. This approach involves transferring the
hidden representations from the teacher model to improve the
training of speech recognition models. Recently, Yoon et al.
introduced Inter-KD [11] that additionally transfers the
teacher’s knowledge to the intermediate CTC layers [29] of
the student network.

III. PROPOSED METHOD
A. PROBLEM FORMULATION
An end-to-end speech recognition model is trained to directly
map a speech input x to a text sequence y. When training the
model, dropout is commonly employed as a regularization
technique to prevent overfitting and improve generalization.
With the dropout technique, the model’s parameters, denoted
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FIGURE 1. An overview of Cons-KD when there are K = 3 student sub-models. In the student-sub-model, a crossed-out circle represents dropped
subsets of neurons due to the dropout. The proposed framework randomly samples multiple student sub-models and incorporates three training
objectives: (1) original CTC training to train the sub-models with the ground-truth labels, (2) knowledge distillation loss to transfer the knowledge from
the teacher to the student sub-models, and (3) consistency regularization objective to minimize the variance among the predictions of the sub-models.
During the consistency regularization process, the gradients of the average prediction are stopped. This ensures that the consistency objective solely
promotes consistency among the sub-models without directly influencing the training of the student model. It is important to note that the proposed
framework does not require additional parameters for student sub-model sampling; all student sub-models share the same set of parameters.

as φ, are trained to maximize the following log-likelihood:

φ∗ = argmin
φ

Es[−
N∑
i=1

log p(yi|xi, si;φ)] (4)

where N represents the total number of training samples, and
si is the dropout mask for the i-th training sample. Since the
dropout involves randomly sampling dropout masks si for
each training example, it allows the model to sample different
sub-models for every training iteration. This stochastic mask
sampling procedure introduces diversity and prevents the
model from heavily relying on specific units or patterns,
resulting in enhanced generalizability.

However, despite its effectiveness in model training, the
dropout technique can lead to inconsistencies between the
training and inference stages. During training, a sub-model
is randomly sampled with dropout, while we use a full model
without dropout during inference. Consequently, the model’s
behavior may differ between the two stages. Although
conventional KD methods show promising performance
improvements, they have certain limitations in effectively
addressing this inconsistency issue.

B. CONS-KD
Inspired by the above gap between training and inference,
we propose a novel distillation method called Cons-KD,
which aims to mitigate the inconsistency problem of the
student model during knowledge transfer.

As depicted in Figure 1, we employ K multiple forward
passes of the student model to generate a set of student
sub-models. Each forward pass is constructed by applying
a distinct dropout mask, resulting in sub-models inherently
different from each other. This sampling technique enables us
to obtain diverse output variants from a single input without
requiring any additional model parameters. It is important
to note that all student sub-models share the same set of
parameters. To simplify notation, we denote the softmax
output of the k th student sub-model with the dropout mask sk
as h(x, sk ; θstu) ∈ RT×C , where T represents the total number
of frames, and C denotes the number of target labels.

The proposed KD framework uses three objectives to train
the student sub-models.

1) ORIGINAL CTC OBJECTIVE FUNCTION
Firstly, we train the student sub-models using the original
CTC loss. The CTC loss for the k th sub-model is as follows:

Lkctc = CTC(y, h(x, sk ; θstu))/K (5)

where y represents the ground-truth target sequence.

2) KD WITH AVERAGE PREDICTION OF STUDENT
SUB-MODELS
Our KD objective aims to minimize the difference between
the average prediction of the student sub-models and the
prediction of the teacher model. Unlike conventional KD
methods that solely rely on a single sub-model’s output,
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we leverage the average prediction derived from multiple
sub-models. By employing the average prediction during
knowledge transfer, the proposed KD objective not only
enables the transfer of the teacher’s knowledge to the student
model but also improves the overall consistency of the student
model’s predictions. In the proposed framework, the KD loss
can be computed as

Lkd = λkd · ∥g(x; θtea)− h̄(x; θstu)∥22 (6)

where g(x; θtea) denotes the softmax output of the teacher
model, and h̄(x; θstu) = 1

K

∑K
k=1 h(x, sk ; θstu) represents

the mean of student sub-models’ outputs. We employ the
l2 loss for knowledge transfer instead of the Kullback-Leibler
(KL) divergence-based distillation loss, as the latter often
fails to converge for the CTC model [10], [14], [15]. In our
experiments, we experimentally set the tunable parameter λkd
to 0.25.

3) CONSISTENCY REGULARIZATION FOR STUDENT
SUB-MODEL
Additionally, we minimize the l2 loss between the average
prediction h̄(x; θstu) and each student sub-model’s output
h(x, sk ; θstu), similar to computing the sample variance. This
objective further focuses on reducing the variance among
the predictions. The proposed consistency objective for each
sub-model is as follows:

Lkcons = λcons · ∥h(x, sk ; θstu)− sg[h̄(x; θstu)]∥22 (7)

where sg[·] represents the stop-gradient operation. The stop-
gradient operation is used to prevent the gradients from
propagating through the average prediction of the student
sub-models h̄(x; θstu), treating it as a constant during the
backpropagation process. This ensures that the consistency
objective only encourages the student sub-models to generate
consistent predictions among themselves without directly
influencing the training of the student model. In our
experimental setting, we set the parameter λcons to a value
of 0.25.

While the distillation term Lkd also contributes to the
consistency of the student model, the consistency regu-
larization term Lkcons specifically targets the reduction of
variance among the predictions. We empirically find that
combining both Lkd and Lkcons yields better performance
improvements compared to the case when using only the
distillation term Lkd , which will be additionally described in
Session IV-D.

4) TOTAL TRAINING OBJECTIVE
When there areK sub-models, the final objective function for
Cons-KD is formulated as follows:

Ltotal =
K∑
k=1

(Lkctc + Lkcons)+ Lkd . (8)

Algorithm 1 summarizes the proposed KD strategy.

Algorithm 1 Cons-KD Training Procedure
Input: Dataset (X ,Y )
Parameters: teacher model parameters θtea, student model
parameters θstu, number of student sub-models K , set of
dropout masks {sk}, learning rate η, weight for KD loss λkd,
weight for consistency loss λcons
Output: Model parameters θstu

1: for (x, y) in (X ,Y ) do
2: Initialize h̄← 0, Ltotal← 0
3: Calculate average prediction of student sub-model

predictions hk ← h(x, sk ; θstu)
h̄← 1

K

∑K
k=1 hk

4: for k = 1toK do
5: Compute CTC loss Lkctc← CTC(y, hk )/K
6: Compute consistency loss Lkcons←λcons · ∥hk−h̄∥22
7: Accumulate total loss Ltotal← Ltotal+Lkctc+Lkcons
8: end for
9: Compute KD loss Lkd for h̄ and teacher prediction

Lkd← λkd · ∥g(x; θtea)− h̄∥22
10: Update total loss Ltotal← Ltotal + Lkd
11: Update model parameters θstu← θstu − η · ∇θstuLtotal
12: end for
13: return θstu

IV. EXPERIMENTS
A. EXPERIMENTAL SETTING
1) DATASET
We mainly conducted our experiments on the LibriSpeech
[30] dataset, which is widely used as a benchmark for the
speech recognition task. This dataset consists of around
1000 hours of English speech readings, recorded at a
sampling rate of 16 kHz. During training, we utilized
the following subsets: ‘‘train-clean-100’’, ‘‘train-clean-360’’,
and ‘‘train-other-500’’. For evaluation, we applied the subsets
‘‘dev-clean’’, ‘‘dev-other’’, ‘‘test-clean’’, and ‘‘test-other.’’

2) PERFORMANCE METRICS
To compare the performance, we measured word error rate
(WER) and relative error rate reduction (RERR). WER
is a widely used metric to evaluate speech recognition
performance. It is calculated by identifying the number
of errors in the form of substitutions, insertions, and
deletions within the recognition result. These errors are then
summed up and divided by the total number of words in
the reference sentence. RERR measures the proportional
reduction in WER relative to the baseline performance,
indicating improvements in speech recognition accuracy.

3) MODEL CONFIGURATION
a: LIBRISPEECH
Both the teacher and student models were built based on
the Conformer-CTC architecture, which is the CTC-based
variant of the Conformer [8] model. Specifically, Conformer-
CTC employs the same encoder architecture as the original
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Conformer but utilizes the CTC decoding instead of the
Transducer approach, making it a NAR model. Additionally,
it replaces the long short-term memory (LSTM) decoder
with a linear decoder on the top of the encoder. The
Conformer model integrates self-attention and convolution
modules, using self-attention layers to capture global inter-
actions and convolutions to effectively identify local corre-
lations. In our experiments, the student model consisted of
16 Conformer blocks, each having 144 dimensions, and
utilized a multi-head attention mechanism with 4 heads. This
configuration resulted in approximately 9 M parameters. The
teacher model comprised 18 Conformer blocks, with each
block having 512 dimensions, and employed a multi-head
attention mechanism with 8 heads, leading to a total of
about 122 M parameters. For the language model (LM),
we employed the Transformer [3]-based LM as a neural
rescoring tool, designed to rescore the top candidates
predicted by the speech recognition model. This LM was
trained using the LibriSpeech text corpus. In particular, the
top candidates were produced via beam search decoding and
subsequently presented to the Transformer-based LM for
ranking.

b: COMMON VOICE
We also conducted our experiments on the Common
Voice 7.0 [31] Spanish dataset, evaluating the model on
both the dev and test sets. For both the teacher and
student models, we adopted the hybrid Transducer-CTC
architecture [32], a recent ASR model that utilizes a shared
encoder with both CTC and Transducer decoders to enhance
accuracy and reduce computation. The student baseline’s
encoder consisted of 15 FastConformer [33] layers with
128 dimensions and 4 heads. The prediction and joint
networks had 320 dimensions, and the student model had
approximately 8 M parameters. The pre-trained teacher
model’s encoder comprised 17 FastConformer layers with
512 dimensions and 8 heads. Its prediction and joint networks
had 640 dimensions, resulting in approximately 114 M
parameters.

4) IMPLEMENTATION DETAILS
In our experiments, we used the NeMo [34] toolkit for
implementing the ASR models. For data augmentation
during training, we employed SpecAugment [35]. During
the training phase of the student model, we configured the
augmentation parameters by setting the number of frequency
masks to 2 and the number of time masks to 5. Additionally,
the frequency and time masks were configured with widths
of 27 and 0.05, respectively.

a: LIBRISPEECH
The student model’s training was performed on four Quadro
RTX 8000 GPUs, each with 48 GB of memory, with a total
batch size of 192. We trained the student with 200 epochs,

and the AdamW [36] algorithm was adopted as the optimizer,
with an initial learning rate of 5.0. The NoamAnnealing
scheduler [3] was utilized to regulate the learning rate
during the training period, with warmup steps set to 10,000.
Furthermore, a minimum learning rate of 1e-6 was specified.
As for the teacher model, we utilized a pre-trained checkpoint
provided by the NeMo toolkit. Similarly, the checkpoint of
the Transformer-based LM was obtained from NeMo. For
both teacher and student models, a byte-pair encoding (BPE)
[37] vocab size of 128 was used.When applying beam-search
decoding with the Transformer-LM, the beam width was
experimentally set to 256.

b: COMMON VOICE
The student model was trained using four Quadro
RTX 8000 GPUs with a total batch size of 256. Training was
conducted over 50 epochs, utilizing the AdamW algorithm
as the optimizer with an initial learning rate of 1.0. The
NoamAnnealing scheduler settings matched those used in the
LibriSpeech experiments. For both the teacher and student
models, a BPE vocabulary size of 1024 was employed.

5) CONVENTIONAL KD APPROACHES FOR COMPARISON
We compared Cons-KD with conventional KD techniques,
including Guided-CTC [12], SKD [10], and Inter-KD [11].
All KD methods share the same training settings (e.g.,
learning rate, GPU usage, BPE configuration, etc.) as those
of the student baseline. In the Guided CTC framework, the
approach focuses on distilling the spike timings from the
teacher model. It is achieved by generating a mask that
emphasizes the output label with the highest probability
at each frame. By applying this mask during the student
training, the student model is guided to follow the teacher’s
spike timing for each prediction. The SKD is a promising
KD method in the field of speech recognition, aimed at
transferring the frame-level posterior probabilities from the
teacher model to the student model. It employs the l2 loss
to measure differences between the softmax outputs of the
teacher and student models, providing an effective alternative
to the Kullback-Leibler (KL) divergence objective. Inter-KD
additionally transfers the teacher’s knowledge not only to the
final output layer but also to the intermediate CTC layers [29]
of the student network. In the original configuration of
Inter-KD, the intermediate CTC layers were attached to the
18th, 24th, and 30th layers of the Jasper Mini model, which
consists of a total of 33 1D convolutional layers. These
intermediate CTC layers were located at higher layers of the
model. However, we found that placing the CTC layers in
the middle position was more effective for the Conformer
model. Therefore, we applied different configurations for
performance comparison. Specifically, we used L = 6,
L = 8, L = 10, L = 12, and L = 8, 10, where L = 6
indicates that the intermediate CTC layer was added to the
6th layer of the Conformer-CTC model.
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TABLE 1. Comparison of WER (%) and RERR (%) on LibriSpeech with greedy decoding. Bold represents superior results.

TABLE 2. Comparison of WER (%) and RERR (%) on LibriSpeech when applying beam-search decoding with neural rescorer. Bold represents superior
results.

B. MAIN RESULTS
1) LIBRISPEECH
Table 1 shows theWER and RERR results on the LibriSpeech
dataset with greedy decoding, comparing Cons-KD with
other competing KD methods. The key difference between
Cons-KD and other methods lied in its ability to address the
issue of inconsistency during the KD process. It is important
to note that the proposed framework did not require additional
parameters for student sub-model sampling; all student
sub-models share the same set of parameters. From the
results, it is verified that the student with Cons-KD yielded
the best performance for all configurations. Specifically,
the distilled student model achieved WER 3.92 % on the
dev-clean dataset and WER 4.13 % on the test-clean dataset,
corresponding to RERR 19.18 % and RERR 19.02 %,
respectively. On the more challenging ‘other’ datasets, the
student model using Cons-KD achievedWER 10.56 % on the
dev-other and WER 10.32 % on the test-other, with RERRs
of 16.92 % and 19.81 %, respectively. In the context of
Inter-KD, various configurations for the intermediate CTC
layer were examined. It is found that adding the intermediate
CTC layer to the 8th layer of the Conformer-CTC model
(L = 8) resulted in better performance than the other layer
configurations, including L = 6, L = 10, L = 12,
and a combined L = 8, 10 setup. Although Inter-KD with
L = 8 produced promising results, Cons-KD outperformed it
by a significant margin. This indicates that the dropout-robust
student using Cons-KD could greatly improve its overall

performance by mitigating inconsistency caused by dropout.
Compared to the distilled student using Inter-KD (L = 8),
which showed RERR 11.76 % and RERR 11.66 % on
test-clean and test-other datasets, the student model using
Cons-KD achieved notably higher RERRs of 19.03 % on
the test-clean dataset and 19.81 % on the test-other dataset.
Unlike other methods, Cons-KD ensured that the outputs of
the student sub-models remained consistent and reliable, even
with the internal variations introduced by dropout. The results
confirmed that the proposed approach not only enhanced
the effectiveness of KD but also boosted the robustness
of the distilled model compared to other KD methods,
thereby improving the quality of the student model. The
ability of Cons-KD to enhance the student model’s robustness
and overall performance contributed to its superiority and
highlighted its potential as the effective approach for KD.

Additionally, we performed experiments using LM decod-
ing. We employed the Transformer-based LM as a neural
rescoring tool, as previously mentioned. Table 2 gives the
WER and RERR results when incorporating the LM into the
decoding process. For Guided CTC, even though there were
performance improvements over the student baseline, the
improvements were relatively marginal. Regarding Inter-KD,
which achieved promising results among conventional tech-
niques, its effectiveness was not maintained in beam-search
decoding with the LM. Although the configuration with
L = 8 yielded better performance than other configurations,
the differences among these other configurations were not
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TABLE 3. Comparison of WER (%) on Common Voice Spanish benchmark
when applying greedy decoding. Bold represents superior results.

TABLE 4. Comparison of WER (%) when applying different consistency
regularization terms.

substantial, as shown in Table 2. Moreover, while Inter-KD
outperformed SKD in the majority of configurations with
greedy decoding, it did not maintain this lead in beam-search
decoding with the LM. For instance, in the previous
experiments with greedy decoding, the distilled student
model with Inter-KD (L = 8) significantly outperformed the
SKD model. However, Inter-KD lagged behind SKD in most
configurations when using beam-search decoding with the
LM. The distilled students using Inter-KD (L = 8) and SKD
produced WER 8.85 % and WER 8.33 % respectively on the
dev-clean dataset. These results indicate that integrating LM
into the decoding process was notably more challenging than
employing greedy decoding. Interestingly, we verified that
Cons-KD consistently showed the best performance among
the conventional KD approaches, even in scenarios involving
decoding with the LM. In particular, the distilled student
with Cons-KD achieved the lowest WER of 2.69 % on
dev-clean and 2.89 % on test-clean, corresponding RERR
10.93 % and RERR 9.97 %, respectively. Furthermore, Cons-
KD also resulted in the lowest WER on the more challenging
‘other’ datasets, recording 8.18 % on dev-other and 7.85 %
on test-other, translating to RERR 16.53 % and 15.23 %.
These results underscore the proposed method’s substantial
effectiveness in KD.

2) COMMON VOICE
In order to show the versatility of the proposed method,
we also conducted our experiment on Common Voice 7.0
Spanish benchmark. For the teacher model, we used a
pre-trained Hybrid Transducer-CTC FastConformer [33],
provided by the NeMo toolkit. During the KD process,
we transferred the CTC predictions of the teacher model,
utilizing the same competing methods as in the previous
experiments. Table 3 presents the WER results on Common
Voice 7.0, showing that Cons-KD still performed effec-
tively with the Spanish dataset. The results confirm that
conventional KD methods achieved minimal performance
improvement and, in some cases, performed worse than their

TABLE 5. WER (%) results on LibriSpeech with different loss
combinations.

student baseline. However, the proposed method improved
the student’s performance in all configurations, indicating its
effectiveness.

C. COMPARISON OF CONSISTENCY REGULARIZATION
OBJECTIVES
The proposed consistency regularization term Lkcons was
formulated to minimize the l2 loss between the average
prediction h̄(x; θstu) and the output of each student sub-
model h(x, sk ; θstu) while stopping the gradients of the
average prediction during backpropagation. This proposed
objective aimed to reduce the variance among the predictions.
As supported by the analytical findings of Zolna et al. [19],
minimizing the l2 difference between predictions is also
equivalent to minimizing the variance in predictions obtained
from different independent and identically distributed (i.i.d.)
dropout masks. As a result, we compared the proposed
consistency objective Lkcons with the alternative consistency
term, which minimized the l2 difference between the softmax
predictions of the sub-models. Table 4 reports the WER
results. To ensure a fair comparison, we only modified
the consistency regularization term while keeping the other
proposed losses unchanged. From the results, we verified
that Lkcons, which was inspired by the sample variance,
outperformed the alternative approach that measured the
l2 difference between the predictions. Recent studies in
self-supervised learning (SSL) have shown that utilizing the
stop gradient operation was effective for training siamese
networks [38], [39], [40], [41], [42], [43]. Consistent with
these findings, our study further highlighted the efficacy
of incorporating the stop gradient operation in training the
student sub-models.

D. ABLATION STUDY: EFFECT OF EACH TRAINING
OBJECTIVE
In the proposed KD framework, there are three training
objectives to train the student: the original CTC objective
in Eq. (5), the KD loss in Eq. (6), and the consistency
regularization term in Eq. (7). In this section, we proceeded
to verify the effect of each objective function on the student
model’s performance. As shown in Table 5, we evaluated
WERs for different loss combinations. The ablation study
set the number of student sub-models K to 3. From the
results, it is verified that the incorporation of the KD
loss alongside the CTC loss

∑K
k=1(Lkctc) + Lkd led to

the performance improvement in WER, demonstrating the
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TABLE 6. Comparison of WER (%) when applying different K .

effectiveness of KD in the training of the student model.
Different from conventional KD methods that depended
solely on the output of a single sub-model, our KD
objective was designed to minimize the difference between
the averaged predictions of the student sub-models and the
prediction of the teacher model. Additionally, except for
the dev-other, further improvement was observed when the
consistency regularization term was added to the CTC loss∑K

k=1(Lkctc + Lkcons), suggesting that promoting consistency
within the model contributes positively to its ability to
generalize. The best performance was achieved when all
the proposed objective functions were applied together∑K

k=1(Lkctc + Lkcons) + Lkd . While the combination of the
CTC and KD losses already yielded satisfactory results, the
addition of the consistency regularization term could further
improve the student model’s performance. This combination
achieved a WER of 3.92 % on dev-clean, 10.56 % on dev-
other, 4.13 % on test-clean, and 10.32 % on test-other,
respectively, underscoring the synergistic effect of these
training objectives.

E. ABLATION STUDY: EFFECT OF NUMBER OF STUDENT
SUB-MODELS
Table 6 shows the impact of varying the number of student
sub-model samplings K on the WER performance. When K
is set to 2, the distilled student model’s WER performance
was 4.01 % for the dev-clean and 10.88 % for the dev-other,
respectively. For the test sets, the model with K = 2 recorded
a WER of 4.18 % for the test-clean and 10.65 % for the test-
other. An increase in the number of sub-models to K = 3
resulted in WER performance improvement. The distilled
student with K = 3 achieved WER 3.92 % for the dev-clean
and WER 10.56 % for the dev-other. This enhancement was
also evident in the test datasets, with the test-clean WER
decreasing to 4.13 % and the test-other WER to 10.32 %.
These findings imply that employing a greater number of
sub-models, as indicated by a higher K value, can lead to
improved model performance. This suggests that the model
gains from the varied predictions made during the ensemble
training process, enhancing its overall predictive accuracy.

F. ANALYSIS: EFFECT OF λKD
In the proposed KD framework, we considered the tunable
parameter λkd in Eq. (6), which was employed to balance the
distillation loss Lkd . We explored the impact of λkd on Cons-
KD performance, as depicted in Figure 2. We evaluated the
student model on LibriSpeech subsets, including dev-clean,
dev-other, test-clean, and test-other, while varying λkd . The
values of λkd were chosen from the set {0.125, 0.25, 0.5, 1.0}.

FIGURE 2. WER performance across different values of λkd .

TABLE 7. Comparison of the relative training times. The baseline trained
without KD method was set to 1.

From the results, it is confirmed that λkd = 0.25 yielded
better performance compared to the other settings in most
configurations.

V. LIMITATION
The proposed framework required multiple forward passes
of the student model, resulting in a longer training time
compared to previous KD methods, as shown in Table 7.
Despite the comparatively longer training time, each forward
pass for the lightweight student model was not significantly
long. Moreover, considering the performance improvement,
the multiple forward passes were reasonable. In future work,
we aim to explore techniques to reduce the training time
without compromising the performance improvements.

VI. CONCLUSION
In this work, we introduced Cons-KD, a novel approach that
combines consistency regularization and KD to effectively
improve the student’s performance. Byminimizing the incon-
sistency between the training and inference stages, Cons-KD
could train a more dropout-robust student model, leading to
significant performance improvements. From experimental
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results on the LibriSpeech dataset, we confirmed that
Cons-KD outperformed conventional KD methods that did
not consider the inconsistency problem of the student.
The success of Cons-KD highlighted the importance of
addressing dropout-related inconsistency in KD frameworks.
We expect that the proposed approach will provide a broader
impact on KD research, benefiting various types of models
across different tasks.
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