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Abstract

We propose a novel two-stage text-to-speech (TTS) framework
with two types of discrete tokens, i.e., semantic and acoustic
tokens, for high-fidelity speech synthesis. It features two core
components: the Interpreting module, which processes text and
a speech prompt into semantic tokens focusing on linguistic
contents and alignment, and the Speaking module, which cap-
tures the timbre of the target voice to generate acoustic to-
kens from semantic tokens, enriching speech reconstruction.
The Interpreting stage employs a transducer for its robustness
in aligning text to speech. In contrast, the Speaking stage uti-
lizes a Conformer-based architecture integrated with a Grouped
Masked Language Model (G-MLM) to boost computational ef-
ficiency. Our experiments verify that this innovative structure
surpasses the conventional models in the zero-shot scenario in
terms of speech quality and speaker similarity.
Index Terms: speech synthesis, neural transducer, masked lan-
guage modeling, semantic token, acoustic token

1. Introduction
Recently, there has been a notable shift in Text-to-Speech
(TTS) research towards the adoption of discrete speech tokens
as intermediate features [1–4], which presents diverse options
for model architecture and inference strategies. These tokens
are broadly categorized into two types: semantic tokens and
acoustic tokens, depending on their embedded information. Se-
mantic tokens are typically derived through quantization ap-
plied to speech features containing contextualized linguistic de-
tails. These quantized speech features are sourced from various
speech encoders such as self-supervised speech models [5,6] or
speech recognition models [7]. By encoding disentangled lin-
guistic information into discrete codes, semantic tokens allevi-
ate the complexities arising from acoustic diversity, thereby en-
abling a sharper focus on semantic content critical for enhanc-
ing intelligibility. In contrast, acoustic tokens represent code-
words generated by neural codecs [8–11], which have witnessed
significant advancements in recent years. These tokens encap-
sulate acoustic details of raw waveforms, serving as alterna-
tives to traditional frame-level acoustic features such as mel-
spectrograms.

Incorporating discrete tokens into TTS offers numerous ad-
vantages over conventional speech modeling in the continu-
ous domain. Above all, targeting discrete tokens simplifies the
representation of one-to-many mappings by facilitating a cat-
egorical distribution for the output space, addressing the com-
plex challenges posed by continuous domain generative mod-
eling. Moreover, the discrete output space enables the integra-
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tion of various specialized schemes. Particularly noteworthy is
its ability to leverage recent advancements in large language
models (LLM). For example, SPEAR-TTS [1] and VALL-E [2]
employ in-context learning for prompt-oriented zero-shot TTS,
complemented by speech continuation tasks. Additionally, re-
cent progress in iterative sampling with masked language mod-
els (MLM) [3, 12, 13] has demonstrated high-fidelity speech
synthesis with parallel computation, a capability confined to
discrete sequences. Furthermore, the discrete output space can
facilitate the development of robust alignment modeling, sim-
plifying the adoption of transducers [14, 15] within the TTS
framework.

In this work, we propose a high-fidelity TTS framework
designed to optimize the use of semantic and acoustic tokens,
leveraging the benefits of discrete tokenization. This framework
follows a two-stage procedure: converting text into semantic to-
kens (Interpreting) and then into acoustic tokens (Speaking).
There have been attempts to use such a two-stage architecture
with discrete tokens. For example, SPEAR-TTS uses “reading”
and “speaking” modules similar to ours. However, the “reading”
utilizes an encoder-decoder transformer structure that cannot
guarantee a monotonic alignment path, and has some compli-
cated training methods that are hard to reproduce. Also, “speak-
ing” uses a huge decoder-only transformer structure which re-
sults in computational inefficiency induced by sequential gen-
eration. On the contrary, in our architecture, the Interpreting
stage employs a transducer [16] for robust alignment modeling,
capitalizing on the inherent monotonic alignment constraint in
seq2seq models for efficient computation and alignment model-
ing. Also, in the Speaking stage, we employ an MLM with par-
allel iterative sampling for acoustic token generation, leverag-
ing the pre-established alignment between semantic and acous-
tic tokens to enhance inference speed and efficiency. Specifi-
cally, we utilize a group masked language model [12] with HiFi-
Codec [10] to reduce sampling iterations and improve speech
quality. Both phases efficiently exploit conditional dependen-
cies between output sequences during inference, a crucial fac-
tor for our high-fidelity speech generation. Experimental results
on zero-shot TTS demonstrate the superiority of our model over
baseline models in terms of speech quality and speaker similar-
ity. Audio samples are available on our demo page*.

2. Method
The proposed TTS framework consists of a text-to-semantic to-
ken stage, named Interpreting, and semantic to the acoustic to-
ken stage, named Speaking. Then, the acoustic tokens are con-
verted into raw wave through a codec decoder. The entire frame-
work is illustrated in Figure 1.

*https://srtts.github.io/interpreting-speaking/
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Figure 1: Overall architecture of the proposed model.

As semantic tokens, we exploit the index sequence of k-
means clustering on wav2vec 2.0 [6] embeddings, akin to [14].
According to [14], semantic tokens mainly focus on phonetic
information, but it also dealing with some prosodic informa-
tion such as speech rate and overall pitch contour. For acoustic
token extraction, we leverage the HiFi-Codec [10], a sophis-
ticated neural codec tailored for TTS applications. The HiFi-
Codec employs the Group-Residual Vector Quantization (G-
RVQ) to derive multiple streams of discrete token sequences.
Specifically, we use the bi-group and bi-depth G-RVQ to main-
tain the balance between performance and computational effi-
ciency. We denote the semantic token at time step t, as st, while
the acoustic token is represented as yt, each comprising yi,j

t ,
with i, j ∈ {0, 1} denoting indices corresponding to the group
and depth of G-RVQ, respectively.

2.1. Interpreting

In the Interpreting stage, we generate a semantic token se-
quence s0:T from the input text x1:N , addressing alignment be-
tween text and semantic tokens, as well as controlling prosody
embedded in semantic tokens. While attention-based language
models are often considered for this seq2seq translation task,
they cannot exploit the inherent monotonic constraint of align-
ment, making them susceptible to misalignment issues and
requiring computationally intensive key-query matching pro-
cesses. Instead, we adopt a transducer, referred to as Token
Transducer++, a modified version of the Token Transducer
of [14]. Transducers are specifically designed architecture for
discrete seq2seq models with monotonic alignment constraint,
achieved through alignment lattice (Figure 2. (a)) and a special
blank token ∅, which indicates the transition to the next input
frame (horizontal arrows in Figure 2. (a)). The Token Trans-
ducer++ follows the same transducer formulation of [14], where
the training objective is expressed as:

Linter = − logP (s|x)

= − log
∑

A∈F−1(s)

P (A|x, ps).
(1)

Here, A represents a possible monotonic path and, F−1 de-
notes the inverse of the blank removal function F , indicating the
marginalization over all A. Also, ps denotes the speech prompt
for the semantic token generation, i.e., semantic prompt, which
controls paralinguistic information embedded in semantic token
sequence such as speech rate and pitch contour.

As depicted in Figure 2 (a), the Token Transducer++ has a
modularized structure comprising four components: a text en-
coder, a reference encoder, a prediction network, and a joint
network. The text encoder processes text input, producing a
sequence of text embeddings. The reference encoder encodes
speech prompt into fixed-dimensional reference embedding.
The prediction network operates in an autoregressive manner,
leveraging preceding semantic tokens and the reference embed-
ding to generate the semantic token embedding for the current
frame. Lastly, the joint network integrates text and semantic to-
ken embeddings, generating output probabilities, crucial for lat-
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Figure 2: Interpreting procedure

tice construction. Notably, the Token Transducer++ mirrors the
architecture of each module detailed in [14]. However, there
are two drawbacks of transducers: (1) the autoregressive na-
ture of the joint network presents a significant computational
bottleneck during inference, and (2) the joint network’s frame-
wise computation neglects temporal context. To overcome these
problems, when compared to the original Token Transducer, we
largely reduce the size of the joint network and inject reference
embedding to the prediction network instead of the joint net-
work for temporal consideration of reference embedding. We
add the reference embedding to the input embedding of the pre-
diction network. These simple modifications not only boost in-
ference speed but also enhance overall performance.

2.2. Speaking

The Speaking stage aims to translate semantic tokens pro-
duced in the Interpreting stage into acoustic tokens, utilizing
a prompt for acoustic guidance. We tackle this pre-aligned
seq2seq task via Masked Language Modeling (MLM), which
effectively incorporates prompt speaker information through in-
context learning. To achieve this, the Speaking module is metic-
ulously trained to optimize the prediction of masked acoustic
tokens as follows:

Lspeak = −
∑

∀y∈YM

P (y|YU , s, pa), (2)

where YM , YU represents masked and unmasked target acous-
tic tokens. Also, pa denotes an acoustic prompt, and it provides
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Figure 3: Speaking procedure

detailed acoustic attributes (i.e., timbre, acoustic condition) of
the prompt speaker.

Given the characteristics of RVQ-based acoustic tokens,
there have been MLM approaches that capture both of tempo-
ral and RVQ-level-wise conditional dependency [3,17]. Among
these methods, we employ the Group-MLM (G-MLM) ap-
proach in our Speaking module, which is specifically designed
for G-RVQ acoustic tokens. By simultaneously masking tokens
at the same level across different groups, it additionally captures
group-wise conditional dependency. Such a masking strategy
enables the model to more easily predict masked tokens, ul-
timately facilitating efficient decoding. The inference method
that mimics this approach is illustrated in Figure 3. (a). First,
coarse-grained acoustic tokens from different groups (e.g., y0,0,
y1,0) are obtained through Nc iterations of iterative parallel de-
coding. Then, fine-grained acoustic tokens are predicted all at
once. Note that this sampling scheme, named Group-Iterative
Parallel Decoding (G-IPD), which originates from the mask-
ing strategy of G-MLM, improves the audio quality even with a
small number of iterations.

As illustrated in Figure 3. (b), the Speaking part comprises a
prompt network and a generator based on cross-attention mech-
anisms. Each module follows the architecture described in [12].
The prompt network and generator are based on a bidirectional
conformer structure [18] to learn the underlying contextual in-
formation. The prompt embedding processed from the prompt
network operates as the key and value, while the aggregated em-
beddings of the semantic tokens and partially masked acoustic
tokens serve as the query. This cross-attention-based architec-
ture has been proven to be efficient in terms of computational
cost and inference speed, as it allows for caching of key and
value during iterative decoding. This structure streamlines the
whole inference process while offering rich prompt informa-
tion [12, 19].

2.3. Discussion on Framework Design

The division of the two stages offers several distinct advantages.
Firstly, each stage can concentrate on different aspects of TTS
objective. The Interpreting stage can solely prioritize alignment
modeling and linguistic accuracy, whereas the Speaking stage
can focus more on high-fidelity and handling one-to-many map-
pings due to acoustic diversity. We design sophisticated archi-

tectures tailored to each role, considering both speech qual-
ity and inference efficiency. Additionally, from a data perspec-
tive, the Interpreting stage relies on text and speech pair data,
whereas the Speaking stage doesn’t require text annotations.
This flexibility enables us to leverage unlabeled data, which
is more abundant, resulting in higher speech quality and the
ability to represent diverse acoustic conditions. Moreover, re-
garding zero-shot adaptation, we can separately control each
stage as they govern different aspects of paralinguistic infor-
mation. The Interpreting stage manages speech rate and global
prosodic dynamics, while the Speaking stage focuses on tim-
bre and acoustic attributes. This separation provides us with the
flexibility to independently control each component using dif-
ferent speech prompts, thereby enhancing overall controllability
across a broader spectrum.

3. Experiments
3.1. Experimental Setting

Dataset: We conducted zero-shot TTS experiments using the
LibriTTS [20] corpus. We used all of the training subsets (train-
clean-100, train-clean-360, train-other-500) for training and the
test-clean subset for evaluation. All the sentences were phonem-
ized to International Phonetic Alphabet (IPA) using the phone-
mizer library*.
Implementation Details: Following [14], we employed seman-
tic tokens obtained through k-means clustering on the wav2vec
2.0-XLSR model [6]*, with k set to 512. The acoustic tok-
enization was conducted using the pre-trained HiFi-Codec*,
optimized for 24kHz speech samples and a 320 times down-
sampling rate. We constructed the Token Transducer++ with
same the configuration as the Token Transducer in [14], but
we reduced the number of feed-forward blocks from 3 to 1.
The Token Transducer++ were trained for 30 epochs with dy-
namic batch size containing up to 240 seconds on two Quadro
RTX 8000 GPUs. The implementation of Speaking stage fol-
lowed [12], unless specified otherwise. The G-MLM underwent
training for 350k iterations with a batch size of 128 utilizing
four NVIDIA A100 GPUs. We set Nc to 16, resulting in a total
of 17 iterations for sampling.
Baselines: We built three baseline models for comparison:
VITS, VALLE-X [21], and Kim et al. [14]. To adapt the base-
line VITS to the zero-shot adaptive scenario, we incorporated
the ECAPA-TDNN [22] structure as a reference encoder. We
used the open-source implementation for VALLE-X *

Evaluation Metrics: For objective evaluations, we assessed the
character error rate (CER) using a pretrained Whisper large
model [7], leveraging the official implementation*. Addition-
ally, we conducted averaged speaker embedding cosine simi-
larity (SECS) analysis to evaluate speaker similarity between
speech prompts and synthesized samples, utilizing the pre-
trained WavLM large speaker verification model*. We randomly
selected 500 utterances from the test dataset for these objective
assessments.

For subjective evaluation, we measured Mean Opinion

*https://github.com/bootphon/phonemizer
*https://huggingface.co/facebook/

wav2vec2-xlsr-53-espeak-cv-ft
*https://github.com/yangdongchao/AcademiCodec
*https://github.com/Plachtaa/VALL-E-X
*https://github.com/openai/whisper
*https://github.com/microsoft/UniSpeech/tree/

main/downstreams/speaker_verification
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Table 1: Results of zero-shot TTS. MOS and SMOS are repre-
sented with 95% confidence intervals.

Method MOS SMOS CER SECS

Ground Truth 4.21±0.09 4.13±0.10 0.97 0.653

VITS 3.52±0.16 3.23±0.20 4.81 0.385
VALLE-X 3.75±0.14 3.08±0.21 8.72 0.425
Kim et al. [14] 3.69±0.16 3.55±0.21 2.47 0.467

Proposed 3.94±0.14 3.64±0.19 2.34 0.512

Score (MOS) and Similarity MOS (SMOS). The MOS test eval-
uated perceptual speech quality as rated by testers. In the SMOS
test, testers rated the similarity of speaker and prosody between
speech prompts and synthesized samples. Both tests utilized a
scoring range from 1 to 5, with higher scores indicating better
performance. For both subjective tests, 90 testers participated
via Amazon MTurk* platform.

3.2. Results: Zero-Shot Multi-Speaker TTS

According to Table 1, our proposed model exhibited superior
performance compared to the baselines across all assessments.
Notably, VALLE-X demonstrated the worst CER due to mis-
alignment issues stemming from the lack of a monotonic align-
ment constraint. In contrast, alignment models based on the
transducer approach, including [14] and the proposed model,
exhibited higher intelligibility owing to their robust alignment
capabilities. Furthermore, when compared to the transducer-
based model [14], our proposed model presented enhanced
speech quality and speaker similarity, attributed to the G-MLM
utilized in the Speaking stage. Despite some inconsistencies in
the results, it is noteworthy that our proposed architecture out-
performed all assessed perspectives.

3.3. Ablation: TokenTransducer++

To assess the improvement brought by Token Transducer++
over the original Token Transducer [14], we conducted a com-
prehensive comparative analysis employing the same proposed
Speaking stage. We compared objective measures includ-
ing real-time factor (RTF) of the Token Transducer inference,
CER and SECS. Additionally, we computed the negative log-
likelihood (NLL), employing the same methodology as the
training objective, for both transducers. As detailed in Table
2, Token Transducer++ demonstrates significantly improved in-
ference speed compared to the Token Transducer, even with
better CER and NLL scores. While Token Transducer++ ex-
hibits marginally lower SECS, we note that SECS is notably
influenced by the Speaking stage, as evidenced by comparisons
with [14] presented in Table 1. These results underscore the ef-
ficacy of prosody conditioning within the prediction network,
even with a more compact joint network architecture. This in-
tegration not only accelerated inference speed but also yields
overall performance enhancements.

3.4. Ablation: Prosody Controllability

We investigated the controllability using different speech
prompts for both the Interpreting and Speaking stages. Follow-
ing the approach outlined in [14], we generated samples un-
der two conditions: (1) when ps equals pa, and (2) when ps

*https://www.mturk.com

Table 2: Comparison of performance between the Token Trans-
ducer and the Token Transducer++. The RTF is calculated on
RTF8000 GPU.

Method RTF CER SECS NLL

Token Transducer 14.35 2.50 0.518 1.326
Token Transducer++ 23.38 2.34 0.512 1.300

differs from pa (selected from different speakers). The former
represents the general zero-shot TTS scenario, while the latter
assesses the ability to independently control semantic paralin-
guistic elements (such as speech rate and prosody) and acous-
tic conditions (including speaker identity, timbre, and environ-
mental factors). This separation allows for disentangled prosody
controllability. In Table 3, we computed the speaker embedding
cosine similarity (SECS) between the generated speech and the
speech prompts ps and pa, comparing the proposed method
with different Speaking stage implementations, using the speech
generator from [14]. Across all cases, our proposed model ex-
hibited higher scores, indicating that the proposed G-MLM-
based Speaking approach offers superior speaker similarity in
both scenarios. The results shows speaker similarity is mostly
controlled by Speaking stage (pa), while linguistic prosody is
controlled by semantic token generation (ps) [14]. For subjec-
tive verification, we uploaded samples illustrating the separated
control scenario to our demo page.

Table 3: Comparison of SECS between generated samples and
the speech prompts. The prand denotes arbitrary samples from
the test set, which are used as the standard value.

Prompt SECS

Kim et al. [14] Proposed

prand 0.116 0.122

ps = pa 0.462 0.514

ps ̸= pa

ps 0.119 0.128

pa 0.432 0.481

4. Conclusions
In this paper, we introduced a two-stage text-to-speech (TTS)
system designed to achieve high-fidelity speech synthesis
through the utilization of semantic and acoustic tokens. The
first stage, termed the Interpreting module, effectively processes
text and a speech prompt into semantic tokens, ensuring pre-
cise pronunciation and alignment. Following this, the Speaking
module takes over, employing these semantic tokens to gener-
ate acoustic tokens that capture the target voice’s acoustic at-
tribute (timbre, acoustic condition), significantly enhancing the
speech reconstruction process. Experimental results verify that
our proposed method outperforms state-of-the-art baselines re-
garding speech intelligibility, audio quality, and speaker similar-
ity. For future work, we plan to extend our proposed framework
to multiple languages and make our model encompass a broader
range of speech-generation tasks, including singing voice syn-
thesis. Also, we will enlarge the training dataset to the unlabeled
speech data to increase the generalization of Speaking.
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