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Abstract
Pre-training with self-supervised models, such as Hidden-unit
BERT (HuBERT) and wav2vec 2.0, has brought significant im-
provements in automatic speech recognition (ASR). However,
these models usually require an expensive computational cost
to achieve outstanding performance, slowing down the infer-
ence speed. To improve the model efficiency, we introduce an
early exit scheme for ASR, namely HuBERT-EE, that allows
the model to stop the inference dynamically. In HuBERT-EE,
multiple early exit branches are added at the intermediate lay-
ers. When the intermediate prediction of the early exit branch
is confident, the model stops the inference, and the correspond-
ing result can be returned early. We investigate the proper early
exiting criterion and fine-tuning strategy to effectively perform
early exiting. Experimental results on the LibriSpeech show
that HuBERT-EE can accelerate the inference of the HuBERT
while simultaneously balancing the trade-off between the per-
formance and the latency.
Index Terms: self-supervised learning, early exit, speech
recognition, connectionist temporal classification

1. Introduction
Recently, self-supervised speech representation learning
(speech SSL) [1, 2, 3, 4, 5] has achieved considerable improve-
ments in automatic speech recognition (ASR) literature. Unlike
fully-supervised learning approaches, which rely on manually
annotated labels, speech SSL models can learn a meaningful
speech representation by leveraging unlabeled speech data.

Among the various speech SSL models, Hidden-unit BERT
(HuBERT) [2] is one of the most prominent models for speech
recognition. On the LibriSpeech [6], fine-tuned HuBERT us-
ing connectionist temporal classification (CTC) [7] achieves the
state-of-the-art word error rate (WER) results. However, such a
model tends to have a large model size and high computational
complexity to achieve promising performance. For example,
the base version of the HuBERT has about 95 million parame-
ters. Also, a large version utilizes twice as many Transformer
layers [8] as in the base version, with almost 317 million pa-
rameters. These large-scale pre-trained models usually suffer
from slow inference speed, which may hinder their usage in
real-world applications where fast inference is desirable.

Typical approaches to improve model efficiency include
knowledge distillation (KD) [9, 10], pruning [11, 12], and
model quantization [13]. While those methods reduce the pro-
cessing complexity, they still require samples to pass through
the entire model. In contrast, early exiting is a technique to
adaptively accelerate the inference speed by returning the re-
sult at an intermediate layer. Since multiple classifiers are at-
tached to some intermediate layers and jointly trained with the

original backbone model, each classifier yields the prediction
and confidence score during the inference. When the inter-
mediate prediction is confident enough, the corresponding re-
sult can be exited early. However, existing early exit methods
[14, 15, 16, 17, 18] are mainly designed for natural language
processing (NLP) classification tasks. Only a few studies have
been investigated in the speech domain, including speech en-
hancement [19], speech separation [20], and limited-vocabulary
commands recognition [21]. Since the ASR model does not use
the commonly-used classifier for classification, it is challenging
to directly apply the previous approaches to the ASR model.

In this paper, we introduce a simple yet effective early exit
method for ASR, namely HuBERT Early Exiting (HuBERT-
EE), that enables the HuBERT model to stop the inference dy-
namically. To the best of our knowledge, this is the first attempt
to apply the early exit framework to the speech SSL model.
Specifically, the proposed HuBERT-EE accelerates the infer-
ence procedure by adding multiple early exit branches at the
intermediate layers of the HuBERT. When the early exit branch
is confident in its prediction, the model stops the inference and
outputs the intermediate prediction as the final result. Different
from intermediate CTC-based approaches [22, 23, 24, 25], the
HuBERT-EE aims to dynamically use the intermediate predic-
tion as the model’s final output with minimal WER degradation.
Instead of simply applying the intermediate-CTC framework,
we newly construct the self-attention-based early exit branch
to perform the early exiting effectively. In addition, we explore
the proper early exiting criterion and fine-tuning strategy to per-
form the early exiting effectively. Also, we newly design the
self-attention-based early exit branch.

From the experimental results on the LibriSpeech dataset,
it is verified that the HuBERT-EE can be successfully applied
to the ASR task. Compared to the other compression meth-
ods, HuBERT-EE enables the model to stop the inference dy-
namically while achieving a better speed-performance trade-off.
This implies that the proposed method can be applied to a real-
world scenario in which users have the flexibility to adjust the
inference speed according to their demands.

2. HuBERT-EE
Conventional early exit methods have mainly focused on NLP
classification tasks. Considering that the ASR model does not
employ the typical classifier used in classification tasks, it is es-
sential to develop a new early exiting framework specifically
tailored for ASR. In this section, we introduce a pioneering
early exit method designed for HuBERT, namely HuBERT-EE.
Although our experiments utilize HuBERT as the backbone
model, the proposed framework can be extended to other SSL
models as well.
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Figure 1: Overview of the HuBERT-EE. In contrast to the origi-
nal HuBERT model, our proposed approach can stop the infer-
ence dynamically. If an early exit branch is sufficiently confident
in its prediction, the corresponding result can be exited early.

2.1. Model architecture

As shown in Figure 1, HuBERT-EE mainly consists of a back-
bone network and multiple early exit branches. The backbone is
built upon a 12-layers Transformer encoder with an additional
linear projection layer. The early exit branches are located at
some intermediate layers of the backbone network to enable
early predictions.

Following the previous studies [14, 15], we apply the base
version of the HuBERT as for the backbone, which contains 12
Transformer encoder layers. For the convenience of notation,
we let HuBERT-base denotes the base version of the HuBERT.
The backbone is composed of a convolutional neural network
(CNN) encoder, 12 Transformer encoder layers, and the linear
layer with softmax function. The structure of the CNN encoder
and the Transformer encoder conform with those of the original
HuBERT. In order to fine-tune the model for the speech recog-
nition task, the linear projection layer is added to the final layer
of the HuBERT-base model.

In the original HuBERT, the way to fine-tune the model is
to attach one linear projection layer to the final Transformer en-
coder layer. Then, the linear layer outputs the prediction for the
ASR task. In the proposed method, we add early exit branches
to the intermediate layers of the HuBERT, enabling more effi-
cient CTC predictions, like intermediate-CTC [22]. However,
we experimentally found that simply applying intermediate-
CTC with a linear layer did not perform well in the early exit
framework. Instead, as shown in Figure 1, we newly construct
the early exit branch with the self-attention layer at its core, mo-
tivated by the Transformer structure. It is designed carefully to
balance the trade-off between performance and efficiency.

2.2. Pre-training

Before the fine-tuning stage, we start with pre-training the back-
bone model on unlabelled data with a self-supervised learning
objective. This stage is identical to the vanilla HuBERT pre-
training. Note that the linear layer, located at the final Trans-
former layer, and all early exit branches stay unaffected during
the pre-training. In our experiments, we used the pre-trained
HuBERT checkpoint, which is provided by the Fairseq [26]

toolkit.

2.3. Fine-tuning

In this subsection, we discuss how to fine-tune the proposed
HuBERT-EE. Firstly, the CTC loss function for the last linear
projection layer, which is located on top of the Transformer,
can be formulated as

LFT1 = CTCloss(y, g(x)) (1)

where x, y, g, CTCloss denote the input sequence, the corre-
sponding label, the output of the linear projection layer, and the
CTC loss, respectively. This training is identical to the HuBERT
fine-tuning in the original paper [2].

For fine-tuning the early exit branches on the ASR task, the
CTC loss function of the ith early exit branch is as follows:

Li = CTCloss(y, fi(x)) (2)

where fi denotes the output of the ith early exit branch. When
there are N branches in the HuBERT-EE, the loss for fine-
tuning all early exit branches can be calculated as

LFT2 =

N∑
i=1

Li. (3)

Due to the performance degradation, we consider uniform
weights for training the early exit branches instead of the
weighted average [27].

Based on the two losses LFT1 and LFT2, we investigate
the effective fine-tuning approach to train the HuBERT-EE. In
the previous related studies, there are mainly two fine-tuning
strategies for training the early-exit model: (1) joint training
that jointly fine-tunes the final linear layer and all early-exit
branches and (2) two-stage training that fine-tunes the two com-
ponents separately. In Section 3.3, we compare these two fine-
tuning strategies and look for the proper one to train our frame-
work.

The straightforward fine-tuning approach is to jointly train
the last linear layer and all the early exit branches [16, 17] by
minimizing the sum of the two loss functions LFT1 + λLFT2.
In our experiments, we experimentally set λ to 1.

When it is required to maintain the best performance of
the final linear layer, the two-stage training is the desired fine-
tuning approach [14]. In this training scheme, we first fine-
tune the whole model weights with the loss function LFT1, ex-
cept for the early exit branches. Then, we freeze all parameters
fine-tuned in the previous stage and only update the early exit
branches with CTC loss LFT2. Note that the reason for freez-
ing parameters of the backbone and the final linear layer is to
keep the high performance of the original HuBERT-base.

2.4. Early exit inference

After fine-tuning HuBERT-EE for ASR, the model is capable
of making early exit decisions during the inference procedure.
Each early exit branch, added at the intermediate Transformer
layer, outputs the prediction and confidence score. If the inter-
mediate prediction is confident enough, the forward inference
is terminated, and the result is returned early. In this paper, we
quantify the early exit branch’s confidence in its prediction in
two ways: entropy and maximum probability. In Section 3.2,
we compare these two criteria and determine the optimal one.
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2.4.1. Entropy

Since entropy is a well-known measure of uncertainty, we use
the entropy-derived confidence measure as the early exit crite-
rion. The entropy of the ith early exit branch’s output fi(x) can
be computed as

Entropy = − 1

T × C

∑
T

∑
C

fi(x)× log fi(x). (4)

The prediction with lower entropy might be more confident to
exit. If the entropy of fi(x) is lower than the preset threshold
S, HuBERT-EE stops the inference, returning the result early.

2.4.2. Confidence

The maximum probability is another straightforward measure
of certainty. Since we use the CTC framework, the softmax
prediction of the ith early exit branch can be expressed as
fi(x) ∈ RT×C , where T is the total number of frames and
C is the number of label classes. Considering the maximum
probability as the confidence measure, the average confidence
score of fi(x) is given as

Confidence =
1

T

∑
T

max
c

fi(x)
(c) (5)

where maxc fi(x)
(c) ∈ RT×1 represents the maximum proba-

bility for each frame. When the confidence of the intermediate
output fi(x) is larger than the predefined threshold, the corre-
sponding prediction can be exited early.

3. Experiments
3.1. Experimental setup

We used the LibriSpeech [6] (about 1000 hours) for pre-training
and supervised fine-tuning. As the training dataset, “train-
clean-100”, “train-clean-360”, and “train-other500” were used.
For validation, we used “dev-other”. We applied “test-clean”
and “test-other” for evaluation.

We applied HuBERT-EE to the HuBERT-base model, con-
taining 12 Transformer encoder layers. For implementation, the
Fairseq [26] toolkit was mainly utilized to build the models. In
the case of the early exit branch, we added early exit branches
to three layers: 5th, 8th, and 11th layers of the HuBERT-
base. Each early exit branch module had the self-attention di-
mension DEE of 512 with four heads. The additional early
exit branches corresponds to about 22 M parameters, result-
ing in a total of 116 M parameters for the HuBERT-EE. In-
stead of directly pre-training the HuBERT backbone model, we
used the pre-trained checkpoint, provided by the Fairseq toolkit.
When fine-tuning the HuBERT-EE, we followed the fine-tuning
scheme of the original paper [2], and the training was performed
on four NVIDIA Quadro RTX 8000 GPUs.

We compared the HuBERT-EE with other compression
techniques, including DistilHuBERT [28] and LayerDrop [29].
All the models were pre-trained and fine-tuned using 960 hours
of LibriSpeech. To fairly compare the results, a single lin-
ear layer was employed as the ASR module, placed on top of
the SSL model. Both the pre-trained SSL model and the ASR
module were fine-tuned together during the training. We found
that the original DistilHuBERT model, which consisted of two
Transformer encoder layers, did not perform well when using
a linear layer as the ASR module. To address this, we exper-
imented with 8 Transformer encoder layers of DistilHuBERT,

test-clean
WER RTF (×10−3)

HuBERT-base (backbone) 3.88 % 3.529

HuBERT-EE
(Ours)

Entropy Thres.=0.0040 8.05 % 2.879
Entropy Thres.=0.0035 6.50 % 2.999
Entropy Thres.=0.0025 4.17 % 3.312

Confidence Thres.=0.950 8.25 % 2.887
Confidence Thres.=0.955 6.82 % 3.043
Confidence Thres.=0.960 5.62 % 3.308

Table 1: WER (%) on test-clean dataset using different prede-
fined thresholds.

Figure 2: Quality–efficiency trade-offs on test-clean dataset us-
ing different fine-tuning strategies for HuBERT-EE. We set en-
tropy thresholds S from 0.008 to 0.002.

referred to as DistilHuBERT-8L. Regarding LayerDrop, we ap-
plied it to the HuBERT-base model during the fine-tuning pro-
cedure and set the LayerDrop rate p to 0.1 and 0.3.

We measured two performance metrics: word error rate
(WER) and real time factor (RTF). WER is a widely used met-
ric to evaluate the accuracy of ASR task, and RTF measures a
decoding speed with the ratio between the ASR processing time
and the utterance duration.

For the inference, we applied greedy decoding without a
language model. Since some model configurations did not sup-
port CPU-only inference, we evaluated GPU-based inference
for each model. The ASR models with a large model size typ-
ically use GPU resources for inference, so it is reasonable to
utilize the GPU for decoding models. RTF was measured on a
single NVIDIA Quadro RTX 8000 GPU with single batch size,
and we averaged RTF results over three runs.

3.2. Exploring suitable early exiting criterion

To determine the proper early exit criterion, we examined the
predefined threshold values for both entropy (in Eq. (4)) and
confidence (in Eq. (5)). As shown in Table 1, we observed
that both confidence and entropy-derived criterions performed
well on ASR. However, the entropy criterion was more sup-
portive in making early exit decisions, achieving better WER
performance with lower RTF values. Specifically, on the test-
clean dataset, HuBERT-EE with the entropy threshold 0.0035
achieved a WER of 6.50 %. In contrast, HuBERT-EE with the
confidence threshold 0.955 resulted in a slightly worse WER of
6.82 %, while exhibiting slower inference speed. This suggests
that utilizing the entropy criterion in HuBERT-EE leads to bet-
ter trade-offs between WER and inference speed compared to
the confidence one. Therefore, we applied the entropy-derived
criterion in Eq. (4) as the baseline metric to decide the exiting.

3.3. Proper fine-tuning strategy for HuBERT-EE

In Section 2.3, we discussed two fine-tuning strategies for
HuBERT-EE: (1) joint training and (2) two-stage training. In
Figure 2, we visualized the trade-off while setting different en-
tropy thresholds from 0.008 to 0.002. Entropy is adopted as the
early exit criterion, as it performed better than confidence in the
previous experiment. We measured both RTF and WER per-
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Exit Layer Joint Training Two-stage Training
5 21.11 % 37.36 %
8 8.60 % 11.99 %
11 4.04 % 4.21 %
12 3.90 % 3.88 %

Table 2: Each exit layer’s WER (%) on test-clean dataset using
different fine-tuning strategies.

Figure 3: Performance comparison on test-clean. All results
were evaluated based on greedy decoding. We set different
thresholds S from 0.005 to 0.002 for HuBERT-EE. The pro-
posed model was fine-tuned with joint training.

formance on the test-clean. The trade-off curves demonstrate
that the HuBERT-EE with joint training showed a better trade-
off compared to the two-stage training approach. As the RTF
value decreases, the difference between the two methods be-
came more apparent. This is because the two-stage training was
considerably weaker in earlier layers, as shown in Table 2. From
the results, it is confirmed that the joint training was preferable
as the fine-tuning strategy of the HuBERT-EE.

3.4. Performance comparison with conventional methods

We compared the performance of the proposed approach with
the conventional compression methods for HuBERT, includ-
ing DistilHuBERT [28] and LayerDrop [29]. DistilHuBERT
is the recent distillation method to reduce the size of HuBERT,
and LayerDrop is an effective structured pruning technique for
Transformer network. We used the entropy-based metric as the
early exit criterion and fine-tuned HuBERT-EE with joint train-
ing due to their promising results in previous experiments. Fig-
ure 3 shows quality–efficiency trade-offs on test-clean. From
the results, it is verified that HuBERT-EE indeed achieved a bet-
ter speed-performance trade-off compared to the others. In ad-
dition, the proposed framework enabled HuBERT to adjust the
inference speed without requiring model retraining. This flexi-
bility is particularly advantageous in resource-constrained sce-
narios. By fine-tuning specific early exit branches, HuBERT-EE
could provide greater control over the inference speed. It’s im-
portant to note that small RTF gains were a result of our GPU-
based evaluation since some baseline model configurations did
not support CPU-only inference. The technique’s significance
goes beyond RTF gains. HuBERT-EE outperformed DistilHu-
BERT and LayerDrop, allowing the model to stop the inference
dynamically. As shown in Table 3, HuBERT-EE still performed
better on the test-other dataset. Overall, the experimental results
suggest that HuBERT-EE could be a promising solution for ef-
ficient ASR inference. It striked a favorable balance between
performance and efficiency, making it an attractive choice for
practical ASR applications.

3.5. Number of exiting samples

We experimentally attached three early exit branches to the in-
termediate layer: 5th, 8th, and 11th layers of the HuBERT-base
model. As displayed in Figure 4, we further showed the distri-

test-other
WER RTF (×10−3) Speed

HuBERT-base (backbone) 9.09 % 3.629 42.12 Hz
DistilHuBERT-8L 19.21 % 3.023 50.55 Hz

LayerDrop p=0.1 10.93 % 3.493 43.75 Hz
p=0.3 16.92 % 3.085 49.54 Hz

HuBERT-EE
(Ours)

S=0.0055 18.20 % 2.955 51.72 Hz
S=0.005 16.13 % 3.043 50.23 Hz
S=0.003 10.04 % 3.439 44.44 Hz

Table 3: Performance comparison on test-other. Speed of k Hz
means that the model can process k samples per second.

Figure 4: The number of exiting samples on text-clean. Samples
that did not exit earlier were returned via the last linear layer.

bution of exit layers while varying the entropy threshold S from
{0.007, 0.005, 0.003}. For instance, when the entropy thresh-
old was set to S = 0.007, approximately 94 % of the samples
completed the inference at the first early exit branch. This indi-
cates that a significant majority of the samples were able to exit
early based on the given criterion. The results further demon-
strated that as the entropy threshold increased, a larger propor-
tion of samples exited earlier, highlighting the effectiveness of
the utterance-level entropy criterion in making early exit deci-
sions for the ASR task.

4. Limitations
In our study, we employed an entropy-based metric as the cri-
terion for early exiting. However, we observed that the entropy
values were relatively small due to the peak feature of the CTC
softmax outputs. As a result, the entropy-based metric became
sensitive and required careful selection of an appropriate thresh-
old. This was crucial to prevent premature exit or unnecessary
computations during the inference process. Therefore, it is im-
portant to consider the specific task and dataset characteristics
and carefully choose an appropriate threshold to ensure optimal
performance and avoid any potential drawbacks related to early
exiting decisions.

5. Conclusions
In this paper, we introduced a novel early exit mechanism
for ASR, namely HuBERT-EE, that can dynamically accel-
erate the inference of a large-scale HuBERT model. From
the experimental results on the LibriSpeech, it is verified that
the HuBERT-EE was successfully applied to the ASR task
while achieving a better quality–efficiency trade-off compared
to other compression techniques. Moreover, we conducted de-
tailed analyses to determine the optimal training strategy and
early exit criterion for the early exit branch.
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