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Abstract—We present SegINR, a novel approach to neural Text-
to-Speech (TTS) that eliminates the need for either an auxiliary
duration predictor or autoregressive (AR) sequence modeling for
alignment. SegINR simplifies the TTS process by directly convert-
ing text sequences into frame-level features. Encoded text embed-
dings are transformed into segments of frame-level features with
length regulation using a conditional implicit neural representation
(INR). This method, termed Segment-wise INR (SegINR), captures
temporal dynamics within each segment while autonomously defin-
ing segment boundaries, resulting in lower computational costs. In-
tegrated into a two-stage TTS framework, SegINR is employed for
semantic token prediction. Experiments in zero-shot adaptive TTS
scenarios show that SegINR outperforms conventional methods in
speech quality with computational efficiency.

Index Terms—Implicit neural representation, sequence
alignment, text-to-speech.

I. INTRODUCTION

N EURAL Text-to-Speech (TTS) models inherently address
the alignment problem by regulating sequence length,

expanding text length into speech length based on the irregular
monotonic alignment between text and speech. This alignment
problem is typically tackled using intermediate frame-level fea-
tures (e.g., mel-spectrogram, semantic tokens [1], [2], acous-
tic tokens [3], [4]) rather than raw waveforms. Conventional
TTS models can be categorized into two types depending on
alignment modeling: autoregressive (AR) and duration-based
non-autoregressive (NAR) methods. AR models extend frames
sequentially, dynamically determining the relevant parts of the
text features, including attention-based sequence-to-sequence
(seq2seq) models [1], [5], [6] and transducers [7], [8], [9]. How-
ever, AR models have drawbacks such as requiring recurrency
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during inference, which leads to slow inference and error propa-
gation, especially with misalignment [10]. In contrast, duration-
based NAR models [11], [12], [13] utilize explicit phoneme
durations for length regulation, expanding text embedding se-
quences to align with frame-level features based on duration,
then converting them into frame-level features in parallel using
various generative models. These models rely on ground truth
alignment acquired from forced alignment algorithms [14], [15],
[16] during training and predicted durations obtained from an
auxiliary duration predictor during inference, which induces the
load of modeling a duration predictor.

In this paper, we propose a novel method that converts text
sequences into frame-level features without requiring either
an auxiliary duration predictor or AR sequence modeling. We
assume that each frame in the encoded text embedding sequence
can contain sufficient information for the corresponding seg-
ment of frame-level features. Following this assumption, we
decompose the seq2seq task into a set of embedding-to-segment
(emb2seg) conversions, which transform a text embedding into a
segment of frame-level features. We build each emb2seg conver-
sion model based on implicit neural representation (INR) [17],
[18], [19], [20]. INR is a multi-layer perceptron (MLP) model
that represents continuous signals as a function of coordinates.
We construct a conditional INR that takes the time index iwithin
the segment as input and returns the ith frame of the segment,
using the text embedding as a conditioning factor. This condi-
tional INR, named Segment-wise INR (SegINR), represents the
temporal dynamics of the frame-level feature within a segment
assigned to each text unit. SegINR replaces length-expanded
sequence modeling with building a function space of time.
Additionally, we introduce an end of segment token ∅, allowing
INR to automatically determine its own duration. By jointly
predicting the output sequence and the ∅ token, the model can
determine segment boundaries autonomously without using an
external duration predictor. SegINR significantly reduces the
computational cost of length-extended sequence modeling, as
the proposed method only requires text-level sequence encod-
ing and shallow MLP layers without receptive field. The final
output sequence is a concatenation of all segments generated
independently by the SegINR.

We explore the application of SegINR within a two-stage
TTS framework in [2], which separates the TTS process into
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text-to-semantic token prediction and speech generation using
semantic tokens. As alignment modeling is tackled in the first
stage, we adopt SegINR for semantic token prediction. By tar-
geting semantic tokens that encapsulate disentangled linguistic
information, instead of directly modeling continuous speech
features, we mitigate the inevitable discontinuities at segment
boundaries. We then generate waveforms from semantic tokens
using a masked language model from [21]. Our experiments
in a zero-shot adaptive TTS scenario demonstrate that the pro-
posed approach outperforms conventional methods. Generated
samples are available on the demo page.1

II. BACKGROUNDS

A. Length Regulation in TTS

1) Attention-Based AR Models [1], [5], [6], [22]: Attention-
based AR models calculate alignment using an attention mech-
anism [23], [24], rather than defining explicit durations. This
eliminates the need to calculate durations during both training
and inference, simplifying the framework. However, their au-
toregressive nature leads to slow inference, and the attention
mechanism can cause alignment failures [10], as it does not
guarantee monotonic constraints.

2) Transducer [7], [8], [9]: Transducers are well-suited for
seq2seq tasks with monotonic alignment, such as speech recog-
nition [25], and have also been applied to TTS [7], [8], [9].
They construct an alignment lattice and define the conditional
likelihood as the marginalization over all possible paths, using
a special blank token ∅ to indicate transitions to the next
input frame. However, like attention-based models, transducers
operate autoregressively, leading to slow inference.

3) Duration-Based NAR Models [11], [12], [13]: Duration-
based NAR models explicitly define durations for text units.
Text embeddings are duplicated based on their durations and
decoded to generate the output sequence, enabling parallel
generation and fast inference. However, most of these models
rely on external duration information from forced alignment
algorithms [14], [15], [16] during training and require a duration
predictor during inference. This introduces the additional com-
plexity of building a duration predictor and cascading errors due
to training-inference mismatch. Recent works [26], [27] address
this mismatch with differentiable alignment.

B. Implicit Neural Representation (INR)

Implicit Neural Representations (INRs) are neural networks
that parameterize fields in continuous coordinates, enabling the
representation of complex, high-dimensional data with a small
number of learnable parameters. For example, a colored 2D
image can be modeled as R2 → R3, mapping pixel coordinates
to RGB values. INRs are widely used in data compression [28],
[29], 3D rendering [18], [19], [30], and generative model-
ing [20], [30], [31], [32], with advances in representing fine-
grained details [17], [33]. In the audio and speech domain, [34],
[35] have utilized conditional INRs and hypernetworks [36]

1[Online]. Available: https://gannnn123.github.io/seginr

for waveform generation. Unlike our approach, their focus is
on modeling high-resolution waveforms rather than frame-level
features considering seq2seq alignment.

INRs are well-suited for modeling speech features in TTS
due to the inherent temporal continuity of speech. They can
replace conventional sequence models, eliminating the need for
recursive computations or large architectures like transformers,
and instead rely solely on simple MLP layers to capture tem-
poral dynamics. However, directly applying INRs in TTS is
challenging for conventional conditional INRs due to seq2seq
alignment and varying durations. To address this, we propose
a segment-level approach that resolves alignment issues while
leveraging the benefits of INRs.

III. METHOD

A. Segment-Wise Implicit Neural Representation (SegINR)

Given an input text sequence x1:U and the corresponding
frame-level features y1:T , our objective is to construct a model
that converts x1:U into y1:T . Adhering to the monotonic align-
ment constraint between text and speech, we define the duration
as d1:U ⊆ Z≥0, where

∑U
u=1 du = T . Each input text token

xu is aligned to the segment yu
1:du

, which is a slice of y1:T

starting at index
∑u−1

k=1 dk + 1, and ending at
∑u

k=1 dk. Conse-
quently,y1:T is represented as the concatenation of all segments:
y1:T = y1

1:d1
| y2

1:d2
| . . . | yU

1:dU
.

Regarding the text embedding sequence e1:U obtained from
a text encoder, we assume that each eu can contain sufficient
information for generating yu

1:du
. Then, we breakdown the

seq2seq problem into a set of embedding-to-segment (emb2seg)
problems: generating yu

1:du
from eu, which also determines du

by itself.
We address the emb2seg problem using a conditional INR

named SegINR. SegINR defines a function of the time index
i: Fu(i; eu, θ) = yu

i , where i ∈ R such that 1 ≤ i ≤ du and θ
indicates the parameters of SegINR. Fu leverages the inherent
continuity of sequences to efficiently represent the temporal
dynamics of each segment. Notably, the time index i is treated as
a real-valued scalar, even though only integer values are used in
our framework. To automatically determine the domain [1, du],
we draw inspiration from the transducer framework and allow
Fu to predict a special token ∅, which signifies the end of a
segment. We set Fu(du + 1; eu, θ) = ∅. Consequently, du is
determined as the largest index before predicting∅. After gener-
ating all segments independently for eacheu, the entire sequence
is constructed by concatenating the generated segments. The
proposed framework is illustrated in Fig. 1(a) and (b).

B. Application

1) Semantic Token Prediction: We integrate SegINR into a
two-stage TTS framework in [2] comprising text-to-semantic
token and semantic-to-acoustic token stages. In [2], the first stage
employs a transducer, while the second stage uses a masked lan-
guage model: G-MLM [21], separating coarse-grained linguistic
modeling from fine-grained acoustic modeling. Since alignment
is handled in the first stage, we replace the transducer with
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Fig. 1. Illustration of SegINR and its application for semantic token prediction: (a) overall concept of SegINR, (b) structure of SegINR, (c) training method for
semantic token prediction, (d) inference method for semantic token prediction.

SegINR. Semantic tokens, used as target frame-level features,
encapsulate linguistic and coarse-grained information, minimiz-
ing discontinuities at segment boundaries. Their discrete nature
also simplifies the integration of the ∅ token into the output
space by adding a single class to the categorical distribution,
unlike continuous speech features.

2) Architecture: The entire semantic token prediction model
consists of a text encoder and a SegINR. The text encoder
is built using conformer blocks [37], while SegINR utilizes
a modulated SIREN structure inspired by Coin++ [29]. The
modulated SIREN comprises MLP layers with sine activation,
modulated by a conditioning embedding eu.

3) Training: We jointly train the text encoder and SegINR
using a single training loss. To calculate the ground truth dura-
tion, we utilize Token Transducer++ [2], a transducer designed
for text-to-semantic token translation. The most probable path
in the alignment lattice of the transducer is computed using the
Viterbi algorithm, summing up the number of frames assigned
to each phoneme.

We not only enforce the condition Fu(du + 1; eu, θ) = ∅,
but also train with an auxiliary condition Fu(i; eu, θ) = ∅ for
indices i satisfying du + 1 < i < ipad, where ipad is a constant
for a sufficiently large padding number for ∅. This auxiliary
training ensures the consistent output of ∅ for i > du + 1,
thereby improving the stability of the inference process.

Although SegINR is not a sequence model but rather con-
sists of MLP layers, we train it in a pseudo-sequential manner
for convenience, which is implemented at the batch level, as
illustrated in Fig. 1(c). After extracting e1:U , we expand each
eu ipad times and create a pseudo index sequence. We then
feed both the pseudo index sequence and the expanded text
embeddings. The entire model is trained using cross-entropy loss
between the pseudo output sequence and the target sequence,
which is the concatenation of all ∅-padded semantic token
segments.

4) Inference: Once we obtain e1:U from the text encoder, we
generate y1:T using SegINR, as illustrated in Fig. 1(d). During
inference, SegINR returns the most probable semantic token
at each time index if the estimated probability of ∅ is below a
threshold τ ; otherwise, it returns ∅. A key advantage of SegINR
is its compatibility with both streaming and parallel inference
frameworks. 1) In the streaming scenario, we sequentially de-
code Fu by incrementing i until ∅ is returned, then move on

to the next Fu+1 until U is reached. This process is similar to
the inference of transducers, but operates without recurrence.
2) For parallel decoding, we define imax, the maximum duration
per text unit. All outputs are generated in parallel by injecting
[0, 1, 2, . . . , imax] for each Fu in a batch process. We select only
valid outputs, stopping at the first ∅. If ∅ is not returned by imax,
we set du = imax. Although this method incurs some wasted
computation due to abandoned outputs, SegINR’s low compu-
tational cost results in significantly faster inference compared to
other sequence-level decoding methods.

IV. EXPERIMENTS

A. Experimental Setting

We conducted experiments on zero-shot adaptive TTS, fol-
lowing the experimental settings of previous work [2]. We used
the same semantic tokens; the indices of k-means clustering on
the wav2vec2.0-XLSR model [38] with k = 512. We built the
semantic token prediction model using SegINR, replacing the
Token Transducer++ in [2]. The proposed model was trained
on all training subsets of the LibriTTS corpus [39] and evaluated
on test subsets.

1) Implementation Details: For semantic token prediction,
we used the same text encoder structure of the Token
Transducer++ which consist of a conformer blocks [37]. The
dimension of the text embedding eu is 384. For SegINR, we
implemented a modulated SIREN with three layers of MLP,
each with a hidden dimension of 256 using the official code
from Coin++ [29].2 Through our experiments, we found that
the SIREN activation frequency of w0 = 1.0 performed well.
For zero-shot adaptation, we added a reference encoder with the
same structure as described in [2]. During training, the reference
encoder processes a randomly cropped 3-second segment of the
target speech as in [2]. The resulting reference embedding is
then globally added at the beginning of the text encoder to con-
dition prosody information. Also, we set ipad = 20 for training
SegINR, and imax = 20 and τ = 0.5 for parallel inference. We
trained the proposed model for 50 epochs with dynamic batch
size containing up to 240 seconds.

2) Baselines: We used three baseline models for perfor-
mance comparison: VITS [12] representing an NAR model,

2[Online]. Available: https://github.com/EmilienDupont/coinpp
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VALLE-X [40] representing an AR model, and the model pro-
posed by Lee et al. [2]. To adapt the baseline VITS to the
zero-shot scenario, we incorporated the same reference encoder
structure as in our proposed model. For VALLE-X, we used
the open-source implementation.3 The model by Lee et al. [2]
served as the primary baseline in our work, as we shared the same
semantic-to-acoustic token stage but differing in the semantic
token prediction models: the Token Transducer++.

B. Results: Zero-Shot Adaptive TTS

We evaluated the mean opinion score (MOS), similarity
MOS (SMOS), character error rate (CER), speaker embedding
cosine similarity (SECS), and real-time factor (RTF). MOS,
rated on a 1–5 scale by 14 testers, measured perceptual speech
quality. SMOS evaluated speaker similarity, with the same
testers rating whether the synthesized and reference samples
matched in timbre and prosody. CER, assessing intelligibility,
was calculated using the Whisper large model [41]. SECS
measured speaker similarity between synthesized and reference
speech using the pre-trained WavLM large speaker verification
model.4 For objective evaluations, we randomly selected 800
text-reference speech pairs from the test set.

The proposed model outperformed baseline models across
most subjective metrics. A t-test revealed significant differences
among the baselines, except for the model by Lee et al. [2],
in SMOS. Notably, SMOS, which evaluates both timbre and
prosody similarity, sometimes resulted in higher scores for syn-
thesized samples compared to ground truth, as the latter only
guarantees speaker identity. VALLE-X had the highest CER due
to misalignment issues common in attention-based AR models.
Since SECS is largely influenced by the semantic-to-acoustic
token conversion rather than semantic token generation [2],
the model by Lee et al. [2] achieved scores similar to ours, as
both use the same post-processing model. In terms of inference
speed, VITS demonstrated the highest RTF. However, when
comparing only the semantic token prediction part between the
model by Lee et al. [2] and the proposed SegINR, the Token
Transducer++ in [2] showed an RTF of 22.35, while SegINR
achieved 134.85. This substantial difference indicates the fea-
sibility and computational efficiency of SegINR for sequence
alignment, even though the other part, G-MLM, occupies a
significant portion in our current framework.

C. Ablation: Training and Inference Schemes

We analyzed SegINR’s training and inference schemes. For
training, we compared models trained to predict ∅ only at
i = du + 1 (Fig. 2(a), (c)) with those using auxiliary padded ∅

(Fig. 2(b), (d)). For inference, we compared two methods: return-
ing∅when its probability exceeds thresholds (τ = 0.2, 0.5, 0.8)
or when it has the highest probability among all candidates.
Results are shown in Fig. 2 and Table II.

As shown in Fig. 2, the non-padded training model showed
probabilities for ∅ that were not monotonically increasing,

3[Online]. Available: https://github.com/Plachtaa/VALL-E-X
4[Online]. Available: https://github.com/microsoft/UniSpeech/tree/main/

downstreams/speaker_verification

Fig. 2. Comparison of the adoption of padded training: (a) and (b) show the
probability of ∅, while (c) and (d) show the probability of y for a fixed u.

TABLE I
RESULTS OF ZERO-SHOT ADAPTIVE TTS. MOS AND SMOS ARE REPRESENTED

WITH 95% CONFIDENCE INTERVALS. RTF IS CALCULATED BY A QUADRO

RTX8000 GPU

TABLE II
CHARACTER ERROR RATES (CER) AND DURATION RATIOS FOR EACH CASE OF

PADDED TRAINING

whereas the padded training model produced a monotonic in-
crease in ∅’s probability due to the extrapolated constraints.
Table II presents CER and duration ratio (the total duration of
generated speech divided by the ground truth in the testset).
Higher thresholds led to slower speech rates due to delayed ∅

emission. Padded training improved intelligibility, and τ = 0.8
achieved the lowest CER but produced overly long durations,
mismatching the ground truth. Without padded training, the
model often failed to emit ∅, reaching imax and causing high
CER and exaggerated durations. We selected τ = 0.5 as the de-
fault, balancing intelligibility and duration alignment. Notably,
adjusting τ enables control over SegINR’s speech rate.

V. CONCLUSION

We proposed SegINR, a novel framework for sequence align-
ment in TTS. By leveraging the concept of conditional INRs, we
modeled frame-level speech features on a segment-wise basis
and applied it to semantic token prediction tasks. Our results
demonstrate the feasibility and superiority of SegINR. In future
work, we plan to explore the use of SegINR for other speech
features and to integrate it with various generative models to
enhance its generative capabilities.
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