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Abstract
Generative models have shown strong performance in speech
enhancement, and consistency models further improve both
speed and quality. Building upon these improvements, we pro-
pose an SNR adaptation framework that dynamically aligns the
diffusion timestep with the SNR of the input signal, enhancing
robustness in diverse noise conditions. In our framework, the
reverse process is conditioned on a diffusion timestep that is
adjusted based on the estimated SNR, while the additive Gaus-
sian noise is modulated according to the same SNR estimate.
This design enables a continuous SNR-conditioning mechanism
in which the diffusion timestep serves as an SNR control pa-
rameter, allowing the model to adjust its enhancement process
based on the input SNR. Experimental results demonstrate that
our proposed framework consistently improves perceptual qual-
ity, with even greater improvements observed under challenging
SNR conditions, highlighting its effectiveness.
Index Terms: speech enhancement, diffusion models, consis-
tency models, SNR adaptation, SNR estimation

1. Introduction
Speech enhancement is crucial to improving auditory quality
[1] and supporting downstream tasks such as speech recognition
and speaker identification [2, 3]. However, conventional models
often struggle to effectively generalize when applied to signals
with unseen noise distributions due to their dependence on a
restricted training corpus [4]. This limitation underscores the
need for models capable of robust performance in various levels
of noise conditions.

To address the challenge of adapting to a wide range of dis-
tributions, [5–7] integrate SNR into speech enhancement tasks.
Recently, PercepNet+ [6], and SNR-NAT [7] have demonstrated
the potential to leverage SNR information to handle noise-
adaptive tasks. PercepNet+ achieves this by designing an SNR
estimator and SNR-switched post-processing to control the de-
gree of residual noise removal. On the other hand, SNR-NAT
introduces features derived from a priori and a posteriori SNRs.
Despite these advancements, existing methods often treat SNR
as a discrete parameter or struggle to maintain reconstruction
accuracy, limiting their flexibility under varying noise condi-
tions.

Meanwhile, generative models innovate the text, image,
and audio domains, benefiting from expressive power to sim-
ulate data distributions. Inspired by these works, many existing
methods leverage generative models rather than deterministic
approaches to provide a robust framework for speech enhance-
ment [8–14]. In particular, conditional diffusion models have
shown strong performance in speech enhancement tasks. Diffu-
sion models, fundamentally score-based models, have evolved

into consistency models [15] that enable efficient single-step in-
ference. We adopt SE-Bridge [14] —a method based on consis-
tency models—as our primary baseline due to its efficiency and
robust performance in generative speech enhancement. A com-
mon characteristic among diffusion-based enhancement models
is the gradual change in noise levels throughout the diffusion
process, which enables these models to learn from varying noise
levels across different timesteps. However, most conventional
approaches find it challenging to establish a consistent relation-
ship between the SNR and the diffusion timestep, limiting the
model to fully utilize this noise progression. This limitation is
illustrated in the left part of Figure 1, where signals with differ-
ent SNRs are mapped to the same diffusion timestep. Moreover,
enhancement methods using consistency models are trained on
a wide range of SNR over diffusion timesteps, but single-step
inference at a fixed timestep hinders fully utilizing it.

In this study, we propose a diffusion-based speech enhance-
ment method that effectively utilizes data learned over varying
diffusion timesteps, which correspond to different SNR condi-
tions. As illustrated in the right part of Figure 1, the method in-
troduces an SNR-timestep alignment mechanism, aligning the
SNR of waveforms with the diffusion timestep during training.
This alignment allows the diffusion timestep to act as an SNR
conditioning parameter, enabling continuous parameterization.
During inference, the reverse diffusion process is conditioned
on a timestep determined by the estimated SNR of the input.

This mechanism overcomes limitations of existing ap-
proaches, which either apply SNR discretely or degrade recon-
struction accuracy for perceptual quality. By assigning the dif-
fusion timestep an additional role as an SNR conditioning pa-
rameter, our method fully exploits the SNR variations learned
across timesteps. Additionally, leveraging the alignment be-
tween input SNR and diffusion timesteps, the model adjusts
Gaussian noise levels based on the input SNR. This helps bal-
ance noise suppression and speech preservation [16], further
improving speech enhancement performance.

Our results demonstrate consistent performance at various
noise levels, with an average PESQ increase of 0.12 over the
baseline. Moreover, the model shows particularly higher PESQ
improvements in challenging SNR conditions and demonstrates
the improved ability to maintain reconstruction accuracy un-
der varying noise levels compared to the existing approach [7],
highlighting its robustness in various noise scenarios.

2. Background
2.1. Consistency models for speech enhancement

Consistency models [15] are a generative framework designed
to transform noise into structured data through forward and re-
verse processes while significantly reducing computational cost
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Figure 1: Illustration of the proposed SNR-adaptive diffusion path. The left diagram shows the conventional model using a fixed
diffusion timestep. The right diagram represents the proposed approach, where the timestep is aligned to the SNR of the input signal
and determines the appropriate Gaussian noise level σ(t) for the waveform’s SNR. ||n|| denotes the magnitude of the acoustic noise,
which is related to the SNR.

compared to conventional diffusion models [17, 18]. They
achieve this by enabling single-step inference without compro-
mising generative performance, making them well-suited for
speech enhancement tasks.

In speech enhancement, consistency models incorporate
noisy speech y as a conditioning input during the reverse pro-
cess, guiding the reconstruction of clean speech x0 [14]. The
model employs short-time Fourier transform (STFT) coeffi-
cients of speech signals that capture the characteristics of the
time-frequency domain. To bring out frequency components
with lower energy, a transformation H(·) is applied to the STFT
coefficients:

c̃ =
|c|α

β
ei∠c = H(c) ⇔ c = β|c̃|1/αei∠c̃ = H−1(c̃), (1)

where c represents the STFT coefficients, and α and β are em-
pirically chosen parameters. In this work, the values of α and
β follow those in the baseline [12]. We assume that the sig-
nals are processed in the transformed STFT domain, where the
STFT coefficients are modified using the transformation defined
above.

The forward process is represented using a perturbation ker-
nel that samples xt at an arbitrary timestep t. The state distri-
bution is given as:

p0t(xt|x0, y) = N
(
xt;µx0,y(t), σ(t)

2I
)
, (2)

where µx0,y(t) is the mean, and σ(t)2 represents the variance
at timestep t.

In the reverse process, consistency models reconstruct the
clean speech directly from the noisy input xt guided by y, pre-
dicting the clean signal x0 in a single step:

fθ(xt, t, y) = x̂0. (3)

3. Proposed method
This study proposes a generative speech enhancement model
that continuously conditions the SNR by using the diffusion
timestep as an SNR conditioning parameter. The model builds
on the SE-Bridge [14] framework, a consistency model-based
approach for speech enhancement, integrating the following

Enhancement model fθ(xt, t, y)

+

σtti t̂

SNR estimator

Non-linear
perturbation kernel

µt y (inference)

x y (train)

ydef

Training
Inference
Both train & inference

x̂

Figure 2: The architecture of the proposed model. The blue line
represents the training flow, the red line represents the inference
flow, and the black block indicates the components used in both.

techniques to improve performance and adaptability. As illus-
trated in Figure 2, we first introduce a non-linear perturbation
kernel to align the SNR of noisy signals with the corresponding
diffusion timesteps. Second, we modulate the Gaussian noise
variance based on the input SNR to match the noise level. Dur-
ing inference, the model determines the appropriate timestep
based on the estimated SNR of the input signal, allowing the
enhancement process to adapt to varying noise levels. For SNR
estimation, we employed the PESQNet [19] architecture, min-
imizing computational cost while maintaining accuracy. For
the enhancement model fθ , we adopt the NCSN++ architec-
ture [18], following its successful use in SGMSE+ [12] and SE-
Bridge [14]. The model is trained using the consistency train-
ing algorithm [15, Algorithm 3], which enables efficient sam-
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pling while preserving high-quality speech enhancement. In
our proposed work, the SNR of the signal represents the ratio
between clean speech and acoustic noise, excluding Gaussian
noise added during the diffusion process.

3.1. Forward process configured for SNR conditioning

To utilize t as a continuous SNR conditioning parameter, we
modify the diffusion process to align the SNR of xt and y with
the diffusion timestep t. This alignment involves the following
steps:

3.1.1. Refining noisy signal to a single-SNR level

During training, the input noisy signal y0 is processed to have
a fixed SNR η. This is achieved by adjusting it using the corre-
sponding clean signal x0 as:

yη = H−1(x0) + 10
SNR(y0)−η

20 {H−1(y0)−H−1(x0)}. (4)

Here, H−1(·) is defined in equation (1). To maintain consis-
tency in the power of the acoustic noise term, yη is normal-
ized by scaling it with its maximum value, yielding ynorm

η =
yη/max(yη). After normalization, the transformation H(·)
(Eq.1) is applied, producing ydef = H(ynorm

η ), which serves
as the basis for generating xt and y during the training process.

3.1.2. Generating xt using the proposed perturbation kernel

The perturbation kernel is modified to ensure proper alignment
between the SNR of xt and diffusion timestep t. Linear ker-
nels fail to account for the non-linear transformations, leading
to mismatches between t and the SNR properties of xt. To ad-
dress this, the proposed method uses a non-linear perturbation
kernel:

p′0t(xt|x0, ydef ) = N
(
xt;µ

′
x0,ydef (t), σ(t)

2I
)
, (5)

where

µ′
x0,ydef (t) = H{(1− t)H−1(x0) + tH−1(ydef )}. (6)

Finally, xt is sampled from the perturbation kernel:

xt = p′0t(xt|x0, ydef ). (7)

3.1.3. Aligning the SNR of y with t

In the conventional training process, y is set to ydef , which re-
sults in a fixed SNR for y and limits the model’s capabilities to
handle diverse SNR conditions. To address this, y is replaced
with µ′

x0,ydef (t) to maintain alignment between the SNR of y
and the diffusion timestep. This adjustment allows the model to
better adapt to the varying SNR values in real-world scenarios.

3.2. Gaussian noise modulation

In diffusion-based speech enhancement models, the variance of
Gaussian noise controls the trade-off between noise suppression
and speech preservation [16]. Higher variance improves noise
reduction but can distort speech, while lower variance retains
speech quality but may reduce noise less effectively.

To allow a trade-off between noise suppression and speech
preservation based on the SNR, the SNR of xt and the magni-
tude of Gaussian noise included in xt are matched. Specifically,
the variance of the Gaussian noise, σ(t), is set as:

σ(t) = σ0t. (8)

3.3. SNR-adaptive inference

To adapt the inference process to the noise level of the input
signal, we estimate the corresponding timestep t̂ based on the
noise level during inference. This is achieved using an auxiliary
SNR estimator model fSNR;ϕ, which predicts the SNR of the
input noisy signal as:

ˆSNR(y0) = fSNR;ϕ(y0). (9)

To train the SNR estimator, we normalize the SNR values into
the range [0, 1] so that they align with the model’s output range.
The transformation is defined as:

ξ =
10−SNR/20

1 + 10−SNR/20 . (10)

Both the actual and estimated SNR values are transformed into
ξ and ξ̂, respectively, and the model is trained by minimizing
the L2 loss between them.

Once the SNR is estimated, it is mapped to the correspond-
ing diffusion timestep using:

t̂ = min(1, 10
− ˆSNR(y0)+η

20 ). (11)

Using the estimated SNR, the input noisy signal is normalized
according to the following equation:

ynorm = H

 H−1(y0)

max(H−1(y0))

√
1 + 10− ˆSNR(y0)/10

1 + 10−η/10

 . (12)

Finally, the initial state xt̂ is constructed as:

xt̂ = ynorm + σ(t̂)z, z ∼ N (0, I). (13)

These values, t̂ and xt̂, are then used as the timestep and input
for the reverse diffusion process during inference.

4. Experiments
In this section, we evaluate our proposed method in two differ-
ent settings: (1) realistic speech enhancement evaluated on the
VoiceBank-DEMAND test set and (2) an SNR-specific exper-
iment to examine the robustness of the model across different
SNR levels. The source code for our implementation is acces-
sible on GitHub1.

4.1. Dataset

The datasets used in this study consist of three parts: the
main training dataset, the auxiliary training dataset, and the test
dataset. The main training dataset, derived from the VoiceBank-
DEMAND [20] training set, was used to train the enhancement
model and consists of clean and noisy signal pairs. The noisy
signals were augmented to have single SNR values, specifically
η = [0, 5, 10], to cover varying noise conditions. The clean sig-
nals remained unchanged. The auxiliary training dataset, also
based on the VoiceBank-DEMAND training set, was designed
to train the SNR estimation model. Noisy signals were created
by augmenting the data to cover a wide range of SNR values,
sampled between -60 dB and infinity (∞). These SNR values
were normalized to the range [0, 1] to ensure compatibility with
the loss function. For testing, two test sets were used: the orig-
inal VoiceBank-DEMAND test set, used without modification

1https://github.com/yh-jun/SNR-Aligned_diffSE
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for real-world noise conditions, and an augmented version with
SNR values ranging from -5 to 35 dB in increments of 5 dB,
allowing for a performance evaluation across varying noise lev-
els.

4.2. Baselines and evaluation metrics

Various baselines were considered to evaluate the relative per-
formance of the proposed model. SE-Bridge [14] was selected
as the primary baseline due to its relevance to the proposed
framework and its competitive performance. Additional base-
lines include SGMSE+ [12] and StoRM [13], both based on
score-based generative models, providing a comparison among
various approaches.

The evaluation focused mainly on WB-PESQ [21], a per-
ceptual quality metric closely aligned with human auditory per-
ception. PESQ scores were computed across various SNR lev-
els to evaluate the model’s ability to generalize under various
noise conditions. Additionally, SI-SDR [22] and ESTOI [23]
metrics were used to further evaluate the model’s performance.

4.3. Implementation details

The enhancement model was trained with the diffusion timestep
t ranging from ϵ = 0.001 to T = 1. Timesteps ti ∈
{t1, t2, . . . , tN} were determined following the same setting as
used in the consistency models [15], with N = 30 as the to-
tal number of timesteps. For the SNR estimation model fSNR,
we modified the PESQNet architecture [19] for efficiency by re-
ducing the convolutional channels from 384 to 32 and merging
three fully connected layers into a single layer. Both models
were trained separately.

During inference, t̂ is selected as the value in the ti array
that is closest to the value estimated by the SNR estimator. This
ensures that the reverse diffusion process begins at an appropri-
ate timestep while adhering to the trained set of timesteps.

5. Results
5.1. Evaluation on the original VoiceBank-DEMAND test
set

To evaluate overall performance, the proposed method was
tested on the original VoiceBank-DEMAND dataset. Six con-
figurations, M1–M6, were used for evaluation, defined based
on the chosen value η, and the approach of estimating SNR:
whether an SNR estimator or an SNR oracle was used.

Table 1 presents the performance for all configurations and
the baseline models. The results show that the proposed method
outperforms all baselines for PESQ in configuration M6. In
this evaluation, the number of NCSN++ function evaluations
(NFEs) is used as a measure of computational cost during in-
ference. Notably, M6 with just a single NFE achieves superior
performance compared to models evaluated with up to 30 NFEs.

The SNR estimator achieves an average error of 1.42 dB on
the test set, and our enhancement model maintains stable perfor-
mance for estimation errors within 5 dB. Performance degra-
dation is observed only under larger errors, which are highly
uncommon in real scenarios. This, along with the minimal per-
formance gap between M1–M3 and M4–M6, supports the prac-
ticality of the SNR estimator.

5.2. SNR-specific test results

The performance of the models M4-M6 was further evaluated
on the augmented version of the dataset, with SNR values rang-

Model NFEs η SNR PESQ ESTOI SI-SDR

Mixture 30 - - 1.97 0.79 8.4

SGMSE+ [12] 30 - - 2.93 0.87 17.30
StoRM [13] 31 - - 2.93 0.88 18.80

SE-Bridge [14] 1 - - 2.97 0.87 18.95

M1 1 0 oracle 3.02 0.85 18.79
M2 1 5 oracle 3.07 0.86 19.22
M3 1 10 oracle 3.09 0.87 19.02

M4 1 0 estimated 3.02 0.85 18.83
M5 1 5 estimated 3.07 0.86 19.23
M6 1 10 estimated 3.09 0.87 19.01

Table 1: Average performance of our method and baselines on
the VoiceBank-DEMAND test set, comparing their output to the
noisy speech mixture. The best values in each column are bold.

ing from −5 to 35 dB in increments of 5 dB. Table 2 presents
the PESQ scores for each configuration across these SNR lev-
els. The results show that the proposed method performs consis-
tently well at all SNR levels, with M6 achieving the best scores
at most SNR values. Notably, the proposed method maintained
high performance under low SNR conditions despite not being
trained at those noise levels. This shows that the model gener-
alizes effectively to unseen noise levels.

Table 3 presents the SI-SDR scores for each SNR level. Ex-
isting approaches using SNR-related features, such as [7], tend
to improve perceptual quality at the expense of reconstruction
accuracy, leading to a decline in metrics such as SegSSNR [24].
In contrast, the proposed method not only improves perceptual
scores but also achieves enhancements in reconstruction accu-
racy, as reflected by SI-SDR, at certain SNR levels. In outlier
conditions, increased uncertainty makes it inevitable that dis-
tortion increases in order to maintain higher perceptual quality
[25], especially in unseen low SNR ranges.

Model -5 0 5 10 15 20 25 30 35

SE-Bridge [14] 1.95 2.33 2.72 3.09 3.41 3.68 3.90 4.07 4.19
M4 2.11 2.50 2.83 3.13 3.42 3.70 3.94 4.13 4.27
M5 2.07 2.51 2.89 3.20 3.46 3.72 3.96 4.14 4.26
M6 2.01 2.48 2.90 3.22 3.51 3.75 3.96 4.13 4.24

Table 2: PESQ scores by SNR level

Model -5 0 5 10 15 20 25 30 35

SE-Bridge [14] 12.9 16.0 18.0 19.5 21.1 22.8 24.2 25.0 25.3
M4 13.7 16.8 18.3 19.2 20.2 21.2 22.5 23.6 24.4
M5 12.2 16.4 18.6 19.9 20.9 22.0 23.3 24.4 25.1
M6 8.5 14.3 18.0 20.2 21.7 23.1 24.6 25.9 26.6

Table 3: SI-SDR scores by SNR level

6. Conclusion
This study presented a novel SNR-adaptive framework for the
consistency model-based speech enhancement model. By align-
ing the diffusion timestep with the input SNR and incorporating
SNR-adaptive Gaussian noise modulation, the model enhances
robustness across diverse noise conditions. The experimental
results showed an average PESQ increase of 0.12 over the base-
line, with further improvements in challenging SNR scenar-
ios. The proposed approach can be extended to other diffusion-
based models that incorporate timestep conditioning and addi-
tive Gaussian noise, highlighting its potential to improve gener-
alization and robustness in speech enhancement tasks.
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